Open
Close

Типы рнк и особенности ее структуры. РНК (рибонуклеиновая кислота)

РНК,как и ДНК, представляет собой полинуклеотид. Структура нуклеотидов РНК с таковой ДНК, но имеются следующие отличия:

  • Вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар- рибоза;
  • Вместо азотистого основания тимина- урацил;
  • Молекула РНК обычно представлена одной цепочкой (у некоторых вирусов- двумя);

В клетках существуют три типа РНК: информационная,транспортная и рибосомальная.

Инфармационная РНК (и-РНК) представляет собой копию определённого участка ДНК и выполняет роль переносчика генетической информации от ДНК к месту синтеза белка (рибосомы) и непосредственно участвует в сборке его молекул.

Транспортные РНК (т-РНК)переносят аминокислоты из цитоплазмы в рибосомы.

Рибосомальная РНК (р-РНК) входит в состав рибосом. Считают, что р-РНК обеспечивает определённое пространственное взаиморасположение и-РНК и т-РНК.

Роль РНК в процессе реализации наследственной информации.

Наследственная информация, записанная с помощью генетического кода, хранится в молекулах ДНК и размножается для того, чтобы обеспечить вновь образуемые клетки необходимыми «инструкциями» для их нормального развития и функционирования. Вместе с тем непосредственного участия в жизнеобеспечении клеток ДНК не принимает. Роль посредника, функцией которого является перевод наследственной информации, сохраняемой в ДНК, в рабочую форму, играют рибонуклеиновые кислоты - РНК.

В отличие от молекул ДНК рибонуклеиновые кислоты представлены одной полинуклеотидной цепью, которая состоит из четырех разновидностей нуклеотидов, содержащих сахар, рибозу, фосфат и одно из четырех азотистых оснований - аденин, гуанин, урацил или цитозин. РНК синтезируется на молекулах ДНК при помощи ферментов РНК-полимераз с соблюдением принципа комплементарности и антипараллельности, причем аденину ДНК в РНК комплементарен урацил. Все многообразие РНК, действующих в клетке, можно разделить на три основных вида: мРНК, тРНК, рРНК.

По химической организации материала наследственности и изменчивости эукариотические и прокариотические клетки принципиально не отличаются друг от друга. Генетический материал у них представлен ДНК. Общим для них является и принцип записи генетической информации, а также генетический код. Одни и те же аминокислоты шифруются у про- и эукариот одинаковыми кодонами. Принципиально одинаковым образом у названных типов клеток осуществляется и использование наследственной информации, хранящейся в ДНК. Сначала она транскрибируется в нуклеотидную последовательность молекулы мРНК, а затем транслируется в аминокислотную последовательность пептида на рибосомах с участием тРНК. Однако некоторые особенности организации наследственного материала, отличающие эукариотические клетки от прокариотических, обусловливают различия в использовании их генетической информации.

Наследственный материал прокариотической клетки содержится главным образом в единственной кольцевой молекуле ДНК. Она располагается непосредственно в цитоплазме клетки, где также находятся необходимые для экспрессии генов тРНК и ферменты, часть из которых заключена в рибосомах. Гены прокариот состоят целиком из кодирующих нуклеотидных последовательностей, реализующихся в ходе синтеза белков, тРНК или рРНК.

Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в основном в особых ядерных структурах -хромосомах , которые отделены от цитоплазмы ядерной оболочкой. Необходимый для синтеза белков аппарат, состоящий из рибосом, тРНК, набора аминокислот и ферментов, находится в цитоплазме клетки.

Значительные отличия имеются в молекулярной организации генов эукариотической клетки. В большинстве из них кодирующие последовательности экзоны прерываются интронными участками, которые не используются при синтезе т-РНК, р-РНК или пептидов. Количество таких участков варьирует в разных генах.. Эти участки удаляются из первично-транскрибируемой РНК, в связи с чем использование генетической информации в эукариотической клетке происходит несколько иначе. В прокариотической клетке, где наследственный материал и аппарат биосинтеза белка пространственно не разобщены, транскрипция и трансляция происходят почти одновременно. В эукариотической клетке эти два этапа не только пространственно отделены ядерной оболочкой, но и во времени их разделяют процессы созревания м-РНК, из которой должны быть удалены неинформативные последовательности.

Кроме указанных различий на каждом этапе экспрессии генетической информации можно отметить некоторые особенности течения этих процессов у про- и эукариот.

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой — 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

— процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"-5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"-3" — прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

— полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000-30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000-5000 нуклеотидов; молекулярная масса — 1 000 000-1 500 000. На долю рРНК приходится 80-85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2-0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

    Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

12 января 2018

В предложенной вашему вниманию статье мы предлагаем изучить и построить сравнительную таблицу ДНК и РНК. Для начала необходимо сказать, что есть специальный раздел биологии, который занимается вопросами хранения, реализации и передачи наследственной информации, его название - молекулярная биология. Именно эту область мы и затронем далее.

Речь пойдет о полимерах (высокомолекулярных органических соединениях), образованных из нуклеотидов, которые и имеют название - нуклеиновые кислоты. Эти соединения выполняют очень важные функции, одна из которых - хранение информации об организме. Для того чтобы сравнить ДНК и РНК (таблица будет представлена в самом конце статьи), необходимо знать, что всего выделяют два вида нуклеиновых кислот, участвующих в биосинтезе белка:

  • дезоксирибонуклеиновую, которую мы чаще встречаем в виде аббревиатуры - ДНК;
  • рибонуклеиновую (или сокращенно, РНК)

Нуклеиновая кислота: что это такое?

Для того чтобы составить таблицу сравнения ДНК и РНК, необходимо более подробно познакомиться с данными полинуклеотидами. Начнем с общего вопроса. И ДНК, и РНК - это нуклеиновые кислоты. Как говорилось ранее, они образуются из остатков нуклеотидов.

Эти полимеры можно обнаружить абсолютно в любой клеточке организма, так как именно на их плечи возложена большая обязанность, а именно:

  • хранение;
  • передача;
  • реализация наследственности.

Теперь очень коротко осветим основные их химические свойства:

  • хорошо растворяются в воде;
  • практически не поддаются растворению в органических растворителях;
  • чувствительны к изменениям температуры;
  • если молекулу ДНК выделить каким-либо возможным образом из природного источника, то можно наблюдать фрагментацию при механических действиях;
  • фрагментирование происходит ферментами под названием нуклеазы.

Сходства и различия ДНК и РНК: пентозы


В таблице сравнения ДНК и РНК важно отметить одно очень важное сходство между ними - наличие в составе моносахаридов. Важно заметить, что каждая нуклеиновая кислота имеет отдельные их формы. Деление нуклеиновых кислот на ДНК и РНК происходит в результате того, что они обладают различными пентозами.

Так, например, в составе ДНК мы можем обнаружить дезоксирибозу, а в РНК - рибозу. Обратите внимание на тот факт, что при втором атоме углерода в дезоксирибозе нет кислорода. Ученые сделали следующее предположение - отсутствие кислорода имеет следующее значение:

  • оно укорачивает связи С 2 и С 3 ;
  • добавляет прочности молекуле ДНК;
  • создает условия для укладки массивной молекулы в ядре.

Сравнение азотистых оснований


Итак, всего выделяют пять азотистых оснований:

  • А (аденин);
  • Г (гуанин);
  • Ц (цитозин);
  • Т (тимин);
  • У (урацил).

Важно отметить, что именно эти крошечные частички являются кирпичиками наших молекул. Именно в них заключена вся генетическая информация, а если быть более точными, то в их последовательности. В ДНК мы можем встретить: А, Г, Ц и Т, а в РНК - А, Г, Ц и У.

Азотистые основания - это большая часть нуклеиновых кислот. Помимо пяти перечисленных, встречаются и другие, но это бывает крайне редко.

Принципы строения ДНК

Еще одна важная особенность - наличие четырех уровней организации (вы сможете это увидеть на картинке). Как уже стало понятно, первичная структура - это цепочка нуклеотидов, при этом соотношение азотистых оснований подчиняется некоторым законам.


Вторичная структура - двойная спираль, состав каждой цепи которой специфичен для вида. Остатки фосфорной кислоты мы можем обнаружить снаружи спирали, а азотистые основания располагаются внутри.

Последним уровнем выступает хромосома. Представьте, что Эйфелева башня помещается в спичечный коробок, вот так уложена молекула ДНК в хромосоме. Важно заметить еще и то, что хромосома может состоять из одной хроматиды или двух.

Поговорим, прежде чем составить таблицу сравнения ДНК и РНК, о структуре РНК.

Виды и особенности строения РНК

Для сравнения сходства ДНК и РНК (таблицу вы сможете увидеть в последнем параграфе статьи), разберем разновидности последних:

  1. Прежде всего, тРНК (или транспортная) - одноцепочная молекула, которая выполняет функции транспортировки аминокислот и синтеза белка. Ее вторичной структурой является "клеверный лист", а третичная изучена крайне мало.
  2. Информационная или матричная (мРНК) - перенос информации от молекулы ДНК к месту синтеза белка.
  3. И последняя - рРНК (рибосомная). Как уже стало понятно из названия, содержится в рибосомах.

Какие функции выполняет ДНК?


Сравнивая ДНК и РНК, невозможно упустить вопрос выполняемых функций. В итоговой таблице эта информация обязательно будет отражена.

Итак, не сомневаясь ни секунды, мы можем утверждать, что в маленькой молекуле ДНК запрограммирована вся генетическая информация, способная контролировать каждый наш шаг. Сюда относятся:

  • здоровье;
  • развитие;
  • продолжительность жизни;
  • наследственные болезни;
  • сердечно-сосудистые заболевания и пр.

Представьте, что мы выделили все молекулы ДНК из одной клетки человеческого организма и разложили их в ряд. Как вы думаете, какая длина цепочки получится? Многие подумают, что миллиметры, но это не так. Длина данной цепи будет составлять целых 7,5 сантиметров. Невероятно, но почему мы тогда клетку не можем разглядеть без мощного микроскопа? Все дело в том, что молекулы очень сильно спрессованы. Вспомните, мы в статье уже говорили о размерах Эйфелевой башни.

А какие же все-таки функции выполняют ДНК?

  1. Являются носителями генетической информации.
  2. Воспроизводят и передают информацию.

Какие функции выполняет РНК?


Для более точного сравнения ДНК и РНК, предлагаем рассмотреть функции, выполняемые вторыми. Ранее уже говорилось, что выделяется три типа РНК:

  • РРНК выполняет функцию структурной основы рибосомы, помимо этого они взаимодействуют с другими видами РНК в процессе синтеза белка и принимают участие при сборке полипептидной цепи.
  • Функция мРНК - матрица для биосинтеза белка.
  • ТРНК связывают аминокислоты и переносят их в рибосому для синтеза белка, кодируют аминокислоты, расшифровывают генетический код.

Выводы и сравнительная таблица

Нередко школьникам дают задание по биологии или химии - сравнить ДНК и РНК. Таблица в этом случае будет необходимым помощником. Все, что было сказано ранее в статье, вы сможете увидеть здесь в сжатой форме.

Сравнение ДНК и РНК (выводы)
Признак ДНК РНК
Структура Две цепи. Одна цепь.
Полинуклеотидная цепь Цепи правозакручены относительно друг друга. Может иметь различные формы, все зависит от типа. Для примера возьмем тРНК, имеющую форму кленового листа.
Локализация В 99% локализация в ядре, однако можно встретить в хлоропластах и митохондриях. Ядрышки, рибосомы, хлоропласты, митохондрии, цитоплазма.
Мономер Дезоксирибонуклеотиды. Рибонуклеотиды.
Нуклеотиды А, Т, Г, Ц. А, Г, Ц, У.
Функции Хранение наследственной информации. МРНК переносит наследственную информацию, рРНК выполняет структурную функцию, мРНК, тРНК и рРНК участвуют в синтезе белка.

Несмотря на то что наша сравнительная характеристика получилась очень краткой, мы смогли охватить все аспекты строения и функций рассматриваемых соединений. Эта таблица сможет послужить хорошей шпаргалкой на экзамене или просто памяткой.

Что такое ДНК и РНК? Каковы их функции и значение в нашем мире? Из чего они состоят и как работают? Об этом и не только рассказывается в статье.

Что такое ДНК и РНК

Биологические науки, изучающие принципы хранения, реализации и передачи генетической информации, структуру и функции нерегулярных биополимеров относятся к молекулярной биологии.

Биополимеры, высокомолекулярные органические соединения, которые образовались из остатков нуклеотидов, являются нуклеиновыми кислотами. Они хранят информацию о живом организме, определяют его развитие, рост, наследственность. Эти кислоты участвуют в биосинтезе белка.

Различают два вида нуклеиновых кислот, содержащихся в природе:

  • ДНК — дезоксирибонуклеиновая;
  • РНК — рибонуклеиновая.

О том, что такое ДНК, миру было поведано в 1868 году, когда ее открыли в клеточных ядрах лейкоцитов и сперматозоидов лосося. Позже они были обнаружены во всех животных и растительных клетках, а также в бактериях, вирусах и грибах. В 1953 году Дж. Уотсон и Ф. Крик в результате рентгено-структурного анализа выстроили модель, состоящую из двух полимерных цепей, которые закручены спиралью одна вокруг другой. В 1962 году эти ученые были удостоены Нобелевской премии за свое открытие.

Дезоксирибонуклеиновая кислота

Что такое ДНК? Это нуклеиновая кислота, которая содержит генотип индивида и передает информацию по наследству, самовоспроизводясь. Поскольку эти молекулы являются очень большими, имеется огромное количество возможных последовательностей из нуклеотидов. Поэтому число различных молекул является фактически бесконечным.

Структура ДНК

Это самые крупные биологические молекулы. Их размер составляет от одной четверти у бактерий до сорока миллиметров в ДНК человека, что гораздо больше максимального размера белка. Они состоят из четырех мономеров, структурных компонентов нуклеиновых кислот — нуклеотидов, в которые входит азотистое основание, остаток фосфорной кислоты и дезоксирибоза.

Азотистые основания имеют двойное кольцо из углерода и азота— пурины, и одно кольцо — пиримидины.

Пуринами являются аденин и гуанин, а пиримидинами — тимин и цитозин. Они обозначаются заглавными латинскими буквами: A, G, T, C; а в русской литературе — на кириллице: А, Г, Т, Ц. При помощи химической водородной связи они соединяются друг с другом, в результате чего появляются нуклеиновые кислоты.

Во Вселенной именно спираль является наиболее распространенной формой. Так и структура ДНК молекулы тоже имеет ее. Полинуклеотидная цепочка закручена наподобие винтовой лестницы.

Цепи в молекуле направлены противоположно друг от друга. Получается, если в одной цепи от 3"-конца к 5", то в другой цепи ориентация будет наоборот от 5"-конца к 3".

Принцип комплементарности

Две нити соединяются в молекулу азотистыми основаниями таким образом, что аденин имеет связь с тимином, а гуанин — только с цитозином. Последовательно расположенные нуклеотиды в одной цепи определяют другую. Это соответствие, лежащее в основе появления новых молекул в результате репликации или удвоения, стало называться комплементарностью.

Получается, что число адениловых нуклеотидов равно числу тимидиловых, а гуаниловые равны количеству цитидиловых. Это соответствие стало называться «правилом Чаргаффа».

Репликация

Процесс самовоспроизведения, протекающий под контролем ферментов, является основным свойством ДНК.

Все начинается с раскручивания спирали благодаря ферменту ДНК-полимеразы. После разрыва водородных связей, в одной и в другой нитях синтезируется дочерняя цепь, материалом для которой выступают свободные нуклеотиды, имеющиеся в ядре.

Каждая цепь ДНК является матрицей для новой цепи. В результате из одной получаются две абсолютно идентичные материнской молекулы. При этом одна нить синтезируется сплошной, а другая сначала фрагментарно, лишь затем соединяясь.

Гены ДНК

Молекула несет в себе всю важную информацию о нуклеотидах, определяет расположение аминокислот в белках. ДНК человека и всех других организмов хранит сведения о его свойствах, передавая их потомкам.

Частью ее является ген — группа нуклеотидов, которая кодирует информацию о белке. Совокупность генов клетки образует ее генотип или геном.

Гены расположены на определенном участке ДНК. Они состоят из определенного числа нуклеотидов, которые расположены в последовательной комбинации. Имеется в виду то, что ген не может поменять свое место в молекуле, и он имеет совершенно конкретное число нуклеотидов. Их последовательность уникальна. Например, для получения адреналина используется один порядок, а для инсулина — другой.

Кроме генов, в ДНК располагаются некодирующие последовательности. Они регулируют работу генов, помогают хромосомам и отмечают начало и конец гена. Но сегодня остается неизвестной роль большинства из них.

Рибонуклеиновая кислота

Эта молекула во многом схожа с дезоксирибонуклеиновой кислотой. Однако она не такая большая, как ДНК. И РНК также состоит из полимерных нуклеотидов четырех типов. Три из них сходны с ДНК, но вместо тимина в нее входит урацил (U или У). Кроме этого, РНК состоит из углевода — рибозы. Главным отличием служит то, что спираль этой молекулы является одинарной, в отличие от двойной в ДНК.

Функции РНК

В основе функций рибонуклеиновой кислоты лежат три различных вида РНК.

Информационная передает генетическую информацию от ДНК в цитоплазму ядра. Ее еще называют матричной. Это незамкнутая цепь, синтезирующаяся в ядре при помощи фермента РНК-полимеразы. Несмотря на то что в молекуле ее процентное содержание чрезвычайно низкое (от трех до пяти процентов клетки), на ней лежит важнейшая функция - являться матрицей для синтеза белков, информируя об их структуре с молекул ДНК. Один белок кодируется одной специфичной ДНК, поэтому их числовое значение равное.

Рибосомная в основном состоит из цитоплазматических гранул — рибосом. Р-РНК синтезируются в ядре. На их долю приходится примерно восемьдесят процентов всей клетки. Этот вид обладает сложной структурой, образовывая петли на комплементарных частях, что ведет к молекулярной самоорганизации в сложное тело. Среди них имеются три типа у прокариот, и четыре — у эукариот.

Транспортная действует в роли «адаптера», выстраивая в соответствующем порядке аминокислоты полипептидной цепи. В среднем, она состоит из восьмидесяти нуклеотидов. В клетке их содержится, как правило, почти пятнадцать процентов. Она предназначена переносить аминокислоты туда, где белок синтезируется. В клетке насчитывается от двадцати до шестидесяти типов транспортной РНК. У них всех — сходная организация в пространстве. Они приобретают структуру, которую называют клеверным листом.

Значение РНК и ДНК

Когда было открыто, что такое ДНК, ее роль не была такой очевидной. Даже сегодня, несмотря на то, что раскрыто намного больше информации, остаются без ответов некоторые вопросы. А какие-то, возможно, еще даже не сформулированы.

Общеизвестное биологическое значение ДНК и РНК заключаются в том, что ДНК передает наследственную информацию, а РНК участвует в синтезе белка и кодирует белковую структуру.

Однако существуют версии, что эта молекула связана с нашей духовной жизнью. Что такое ДНК человека в этом смысле? Она содержит всю информацию о нем, его жизнедеятельности и наследственности. Метафизики считают, что опыт прошлых жизней, восстановительные функции ДНК и даже энергия Высшего «Я» - Творца, Бога содержится в ней.

По их мнению, цепочки содержат коды, касающиеся всех аспектов жизни, включая и духовную часть. Но некоторая информация, например, о восстановлении своего тела, расположена в структуре кристалла многомерного пространства, находящегося вокруг ДНК. Она представляет собой двенадцатигранник и является памятью всей жизненной силы.

Ввиду того, что человек не обременяет себя духовными знаниями, обмен информации в ДНК с кристаллической оболочкой происходит очень медленно. У среднестатистического человека он составляет всего пятнадцать процентов.

Предполагается, что это было сделано специально для сокращения жизни человека и падения на уровень дуальности. Таким образом, у человека растет кармический долг, а на планете поддерживается необходимый для некоторых сущностей уровень вибрации.

Рибонуклеиновая кислота представляет собой сополимер пуриновых и пиримидиновых рибонуклеотидов, соединенных друг с другом, как и в ДНК, -фосфодиэфирными мостиками (рис. 37.6). Хотя эти два вида нуклеиновых кислот имеют много общего, по ряду признаков они отличаются друг от друга.

1. У РНК углеводным остатком, к которому присоединены пуриновые или пиримидиновые основания и фосфатные группы, является рибоза, а не 2-дезоксирибоза (как у ДНК).

2. Пиримидиновые компоненты РНК отличаются от таковых у ДНК. В состав РНК, как и в состав ДНК, входят нуклеотиды аденина, гуанина и цитозина. В то же время РНК (за исключением некоторых специальных случаев, на которых мы остановимся ниже) не содержит тимина, его место в молекуле РНК занимает урацил.

3. РНК - одноцепочечная молекула (в отличие от ДНК, имеющей двухцепочечную структуру), однако при наличии в цепи РНК участков с комплементарной последовательностью (противоположной полярности) единичная цепь РНК способна сворачиваться с образованием так называемых «шпилек», структур, имеющих двухспиральные характеристики (рис. 37.7).

Рис. 37.6. Фрагмент молекулы рибонуклеиновой кислоты (РНК), в котором пуриновые и пиримидиновые основания- аденин (А), урацил (U), цитозин (С) и гуанин (-удерживаются фосфодиэфирным остовом, соединяющим рибозильные остатки, связанные N-гликозидной связью с соответствующими нуклеиновыми основаниями. Обратите внимание: цепь РНК обладает определенной направленностью, на которую указывают 5- и З-концевые фосфатные остатки.

4. Так как молекула РНК представляет собой одиночную цепь, комплементарную только одной из цепей ДНК, содержание в ней гуанина не обязательно равно содержанию цитозина, а содержание аденина не обязательно равно содержанию урацила.

5. РНК может быть гидролизована щелочью до 2, З-циклических диэфиров мононуклеотидов; в роли промежуточного продукта гидролиза выступает 2, У, 5-триэфир, который не образуется при щелочном гидролизе ДНК из-за отсутствия у последней 2-гидроксильных групп; щелочная лабильность РНК (сравнительно с ДНК) является полезным свойством как для диагностических, так и для аналитических целей.

Информация, содержащаяся в одноцепочечной РНК, реализуется в виде определенной последовательности пуриновых и пиримидиновых оснований (т. е. в первичной структуре) полимерной цепи. Эта последовательность комплементарна кодирующей цепи гена, с которой «считывается» РНК. Вследствие комплементарности молекула РНК способна специфически связываться (гибридизоваться) с кодирующей цепью, но не гибридизуется с некодирующей цепью ДНК. Последовательность РНК (за исключением замены Т на U) идентична последовательности некодирующей цепи гена (рис. 37.8).

Биологические функции РНК

Известно несколько видов РНК. Почти все они непосредственно вовлечены в процесс биосинтеза белка. Молекулы цитоплазматической РНК, выполняющие функции матриц белкового синтеза, называются матричными РНК (мРНК). Другой вид цитоплазматической РНК-рибосомная РНК (рРНК) - выполняет роль структурных компонентов рибосом (органелл, играющих важную роль в синтезе белка). Адапторные молекулы транспортных РНК (тРНК) участвуют в трансляции (переводе) информации мРНК в последовательность аминокислот в белках.

Значительная часть РНК-первичных транскриптов, образующихся в эукариотических клетках, включая и клетки млекопитающих, - подвергается деградации в ядре и не играет какой-либо структурной или информационной роли в цитоплазме. В культивируемых

Рис. 37.7. Вторичная структура молекулы РНК типа «петли со стеблем» («шпилька»), возникающая вследствие внутримолекулярного образования водородных связей между комплементарными парами нуклеиновых оснований.

клетках человека обнаружен класс малых ядерных РНК которые непосредственно не участвуют в синтезе белка, но могут оказывать влияние на процессинг РНК и общую «архитектуру» клетки. Размеры этих относительно небольших молекул варьируют, последние содержат от 90 до 300 нуклеотидов (табл. 37.3).

РНК является основным генетическим материалом у некоторых вирусов животных и растений. Некоторые РНК-содержащие вирусы никогда не проходят стадию обратной транскрипции РНК в ДНК. Однако для большинства известных вирусов животных, таких, как ретровирусы, характерна обратная транскрипция их РНК-генома, направляемая РНК-зависимой ДНК-полимеразой (обратной транскриптазой) с образованием двухспиральной ДНК-копии. Во многих случаях образующийся двухспиральный ДНК-транскрипт встраивается в геном и в дальнейшем обеспечивает экспрессию генов вируса, а также наработку новых копий вирусных РНК-геномов.

Структурная организация РНК

Во всех эукариотических и прокариотических организмах существуют три основных класса молекул РНК: информационная (матричная или мессенджер) РНК (мРНК), транспортная (тРНК) и рибосомная (рРНК). Представители этих классов отличаются друг от друга размерами, функциями и стабильностью.

Информационная (мРНК) - наиболее гетерогенный в отношении размеров и стабильности класс. Все представители этого класса служат переносчиками информации от гена к белок-синтезирующей системе клетки. Они выполняют роль матриц для синтезируемого полипептида, т. е. определяют аминокислотную последовательность белка (рис. 37.9).

Информационные РНК, особенно эукариотические, обладают некоторыми уникальными структурными особенностями. 5-Конец мРНК «кэпирован» 7-метилгуанозинтрифосфатом, присоединенным к 5-гидроксилу соседнего 2-0-метилрибонуклеозида через остаток трифосфата (рис. 37.10). Молекулы мРНК часто содержат внутренние остатки 6-метиладенина и 2-0-метилированные рибонуклеотиды. Хотя смысл «кэпирования» до конца еще не выяснен, можно предположить, что образующаяся структура 5-конца мРНК используется для специфического узнавания в системе трансляции. Синтез белка начинается на 5"-(кэпированном) конце мРНК. Другой конец большинства молекул мРНК (З-конец) содержит полиаденилатную цепочку из 20-250 нуклеотидов. Специфические функции этого окончательно не установлены. Можно предполагать, что данная структура отвечает за поддержание внутриклеточной стабильности мРНК. Некоторые мРНК, включая гистоновые не содержат poly (А). Наличие poly (А) в структуре мРНК используется для отделения от других видов РНК посредством фракционирования тотальной РНК на колонках с oligo (Т), иммобилизованным на твердом носителе типа целлюлозы. Связывание мРНК с колонкой происходит за счет комплементарных взаимодействий poly (А)-«хвоста» с иммобилизованным oligo (Т).

Рис. 37.8. Последовательность гена и его РНК-транскрипта. Показаны кодирующая и некодирующая цепи, и отмечена их полярность. РНК-транскрипт, имеющий полярность комплементарен кодирующей цепи (с полярностью 3 - 5) и идентичен по последовательности (за исключением замен Т на U) и полярности некодирующей цепи ДНК.

Рис. 37.9. Экспрессия генетической информации ДНК в форме мРНК-транскрипта и последующая трансляция при участии рибосом с образованием специфической молекулы белка.

(см. скан)

Рис. 37.10. Структура «кэпа», находящегося на 5-конце большинства эукариотических матричных РНК 7-метилгуанозинтрифосфат присоединяется к 5-концу мРНК. на котором обычно находится 2-О-метилпуриновый нуклеотид.

В клетках млекопитающих, включая клетки человека, зрелые молекулы мРНК, находящиеся в цитоплазме, не являются полной копией транскрибируемого участка гена. Образующийся в результате транскрипции полирибонуклеотид представляет собой предшественник цитоплазматической мРНК, перед выходом из ядра он подвергается специфическому процессингу. Непроцессированные продукты транскрипции, обнаруживаемые в ядрах клеток млекопитающих, образуют четвертый класс молекул РНК. Такие ядерные РНК очень гетерогенны и достигают значительных размеров. Молекулы гетерогенных ядерных РНК могут иметь молекулярную массу более , в то время как молекулярная масса мРНК обычно не превышает 2106. подвергаются процессингу в ядре, и образующиеся зрелые мРНК поступают в цитоплазму, где служат матрицей для биосинтеза белка.

Молекулы транспортных РНК (тРНК) обычно содержат около 75 нуклеотидов. Молекулярная масса таких молекул составляет . тРНК также формируются в результате специфического процессинга соответствующих молекул-предшественников (см. гл. 39). Транспортные тРНК выполняют функцию посредников в ходе трансляции мРНК. В любой клетке присутствуют не менее 20 видов молекул тРНК. Каждый вид (иногда несколько видов) тРНК соответствует одной из 20 аминокислот, необходимых для синтеза белка. Хотя каждая специфическая тРНК отличается от других нуклеотидной последовательностью, все они имеют и общие черты. Благодаря нескольим внутрицепочечным комплементарным участкам, все тРНК обладают вторичной структурой, получившей название «клеверный лист» (рис. 37.11).

Молекулы всех видов тРНК имеют четыре основных плеча. Акцепторное плечо состоит из «стебля» спаренных нуклеотидов и заканчивается последовательностью ССА Именно через У-гидроксильную группу аденозильного остатка происходит связывание с карбоксильной группой аминокислоты. Остальные плечи тоже состоят из «стеблей», образованных комплементарными парами оснований, и петель из неспаренных оснований (рис. 37.7). Антикодоновое плечо узнает нуклеотидный триплет или кодон (см. гл. 40) в мРНК. D-плечо названо так из-за наличия в нем дигидроуридина, -плечо названо по последовательности Т-псевдоуридин-С. Дополнительное плечо представляет собой наиболее вариабельную структуру и служит основой классификации тРНК. тРНК класса 1 (75% от общего их числа) обладают дополнительным плечом длиной 3-5 пар оснований. Дополнительное плечо у тРНК-молекул класса 2 состоит из 13-21 пар оснований и часто включает неспаренную петлю.

Рис. 37.11. Структура молекулы аминоацил-тРНК, к 3-ССА-концу которой присоединена аминокислота . Указаны внутримолекулярные водородные связи и расположение антикодонового, ТТС- и дигидроурацилового плеч. (From J. D. Watson. Molecular biology of the Gene 3rd, ed.. Copyright 1976, 1970, 1965 by W. A. Benjamin, Inc., Menlo Park Calif.)

Вторичная структура, определяемая системой комплементарных взаимодействий нуклеотидных оснований соответствующих плеч, характерна для всех видов Акцепторное плечо содержит семь пар оснований, -плечо - пять пар оснований, плечо D - три (или четыре) пары оснований.

Молекулы тРНК весьма стабильны у прокариот и несколько менее стабильны у эукариот. Обратная ситуация характерна для мРНК, которая довольно нестабильна у прокариот, а у эукариотических организмов обладает значительной стабильностью.

Рибосомная РНК. Рибосома - это цитоплазматическая нуклеопротеиновая структура, предназначенная для синтеза белка по мРНК-матрице. Рибосома обеспечивает специфический контакт в результате которого и происходит трансляция нуклеотидной последовательности, считанной с определенного гена, в аминокислотную последовательность соответствующего белка.

В табл. 37.2 представлены компоненты рибосом млекопитающих, имеющих молекулярную массу 4,210 6 и скорость седиментации (единиц Сведберга). Рибосомы млекопитающих состоят из двух нуклеопротеиновых субъединиц - большой с

Таблица 37.2. Компоненты рибосом млекопитающих

молекулярной массой (60S), и малой, имеющей молекулярную массу (40S). 608-субъединица содержит 58-рибосомную РНК (рРНК), 5,8S-pPHK и 28S-pPHK, а также более 50 различных полипептидов. Малая, 408-субъединица включает единственную 18S-pPHK и около 30 полипептидных цепей. Все рибосомные РНК, за исключением 5S-PHK, имеют общего предшественника-45S-PHK, локализованную в ядрышке (см. гл. 40). У молекулы 5S-PHK предшественник собственный. В ядрышке происходит упаковка высокометилированных рибосомных РНК с рибосомными белками. В цитоплазме рибосомы достаточно устойчивы и способны осуществлять большое число циклов трансляции.

Небольшие стабильные РНК. В эукариотических клетках обнаружено большое число дискретных, высококонсервативных, небольших и стабильных молекул РНК. Большинство РНК этого типа обнаруживаются в составе рибонуклеопротеинов и локализованы в ядре, цитоплазме или одновременно в обоих компартментах. Размеры этих молекул варьируют от 90 до 300 нуклеотидов, содержание их - 100000-1000000 копий на клетку.

Малые ядерные нуклеопротеиновые частицы (часто называемые snurps - от англ. small nuclear ribonucleic particles), вероятно, играют существенную роль в регуляции экспрессии генов. Нуклеопротеиновые частицы типа U7, по-видимому, участвуют в формировании З-концов гистоновых мРНК. Частицы , вероятно, необходимы для полиаденилирования, a - для удаления интронов и процессинга мРНК (см. гл. 39). Табл. 37.3. суммирует некоторые характеристики небольших стабильных РНК.

Таблица 37.3. Некоторые виды небольших стабильных РНК, обнаруженные в клетках млекопитающих

ЛИТЕРАТУРА

Darnell J. et al. Molecular Cell Biology, Scientific American Books, 1986.

Hunt T. DNA Makes RNA Makes Protein, Elsevier, 1983. Lewin B. Genes, 2nd ed., Wiley, 1985.

Rich A. et al. The chemistry and biology of left-handed Z-DNA, Annu. Rev. Biochem., 1984, 53, 847.

Turner P. Controlling roles for snurps, Nature, 1985, 316, 105. Watson J. D. The Double Helix, Atheneum, 1968.

Watson J. D., Crick F.H.C. Molecular structure of nucleic acids. Nature, 1953, 171, 737.

Zieve G. W. Two groups of small stable RNAs, Cell, 1981, 25, 296.