Open
Close

Реакторы фишера тропша. Катализатор для процесса фишера-тропша (варианты) и способ его получения

Настоящее изобретение относится к катализатору синтеза Фишера-Тропша, способу его получения и способу синтеза углеводородов. Описан нанесенный на носитель катализатор синтеза Фишера-Тропша, который включает каталитический материал, промотор и материал носителя, причем каталитический материал содержит кобальт в количестве, по меньшей мере, 4% от массы катализатора и, по меньшей мере, часть кобальта обладает каталитической активностью в синтезе Фишера-Тропша; промотор содержит никель, причем количество присутствующего никеля меньше, чем количество кобальта; и материал носителя содержит оксид металла, выбранного из или алюминия, или титана, или циркония. Описан способ получения катализатора, в котором носитель пропитывают соединениями кобальта и никеля, и пропитанную композицию сушат, прокаливают и активируют. Описан также способ синтеза углеводородов, в котором синтез-газ контактирует с описанным выше катализатором. Технический эффект - повышение активности, стабильности и селективности катализатора. 3 н. и 31 з.п. ф-лы, 2 табл., 3 ил.

Рисунки к патенту РФ 2389548

Область техники, к которой относится изобретение

Настоящее изобретение относится к синтезу Фишера-Тропша и металлическим катализаторам синтеза.

Уровень техники

В способе Фишера-Тропша для превращения синтез-газа в углеводороды кобальт (Со) является предпочтительным активным металлом, когда сырье для получения синтез-газа представляет собой природный газ. Этот вывод обоснован, главным образом, низкой активностью Со в превращении водяного газа, в противном случае это привело бы к превращению части СО в синтез-газе в диоксид углерода и водород и в результате к потере части углерода в сырье.

Другими известными активными металлами в синтезе Фишера-Тропша являются железо, рутений и никель. Железо часто используется, особенно когда сырьем для синтез-газа является уголь, поскольку необходима собственная активность в превращении водяного газа для того, чтобы отрегулировать желаемое соотношение СО/Н 2 на уровне около 2. Применению рутения препятствует его высокая стоимость, в то время как никель исключается из-за высокой селективности относительно метана, таким образом это приводит к обратному образованию газообразного сырья. Хорошо известно, что никелевые катализаторы используются для метанирования при удалении следов остаточного СО в сырье для синтеза аммиака.

Обычно активный металл синтеза Фишера-Тропша диспергируют на твердом носителе. Этим носителем может быть оксид алюминия, диоксид титана или диоксид кремния, а также множество других оксидов и смешанных оксидов, причем носитель может быть химически стабилизирован или обработан различными способами. Особый интерес привлекает высокотемпературная обработка оксида алюминия, которая приводит к катализатору с высоким содержанием альфа-оксида алюминия, и в результате увеличивается селективность в отношении высших углеводородов (С5+), как описано в документе WO 02/47816 А1 (фирма Statoil).

Приготовление катализатора может включать в себя пропитывание носителя с помощью выбранной методики, или соосаждение с другими компонентами, кроме предшественника кобальта. Частью этой методики также может быть последующее формование с получением желаемой формы. Кроме того, приготовление катализатора обычно включает такие стадии, как сушка, прокаливание и восстановление для того, чтобы получить активный катализатор. В ходе приготовления катализатора часто добавляют ряд других элементов или соединений. Последние могут именоваться как модифицирующие добавки, промоторы структурной стабильности, или промоторы, предназначенные для повышения селективности, активности, стабильности или характеристик катализатора при регенерации. Некоторыми часто исследуемыми модификаторами или промоторами являются диоксид тория, диоксид циркония, марганец, щелочные металлы, оксид лантана или смесь лантанидов, рений, рутений и платин.

Из уровня техники известен ряд альтернативных методик пропитывания, в которых используются альтернативные растворители и химикаты, однако в настоящем изобретении примеры включают методику по влагоемкости с использованием водных растворов нитрата кобальта (Со(NO 3) 2 ·6H 2 O) и, возможно, перрениевой кислоты (HReO 4) или перрената аммония. В качестве альтернативных реагентов могут быть использованы ацетат (ацетаты) кобальта, галогенид (галогениды) кобальта, карбонил (карбонилы) кобальта, оксалат (оксалаты) кобальта, фосфат (фосфаты) кобальта, органические соединения кобальта, перренат аммония, галогенид (галогениды) рения, карбонил (карбонилы) рения, промышленные растворы солей металлов, органические растворители и др.

В методике по влагоемкости предусматривается, что металлсодержащий раствор смешивают с сухим носителем до заполнения пор. Определение конечной точки в этой методике может в некоторой степени изменяться от лаборатории к лаборатории, таким образом, что пропитанный катализатор может иметь внешний вид полностью сухого вещества или внешний вид липкого вещества типа снега. Однако ни в коем случае не допускается наличие какой-либо текучей жидкости.

Кроме того, методика пропитывания может охватывать все доступные способы, кроме влагоемкости, такие как осаждение, пропитывание из суспензии с избытком жидкости, химическое осаждение из паров и др. Хорошо известно, что способ пропитывания может влиять на диспергирование активного металла (кобальта) и поэтому на каталитическую активность, однако поскольку синтез Фишера-Тропша не считается структурно чувствительной реакцией, диспергирование не должно значительно влиять на селективность. Пропитанный катализатор сушат обычно при 80-120°С для того, чтобы удалить воду из пор катализатора, и затем прокаливают обычно при 200-450°С, например, при 300°С в течение 2-16 ч.

Количественный анализ с сопоставлением кобальта и никеля в качестве основного металла в синтезе Фишера-Тропша был осуществлен в работе Н.Shultz, Topics in Catalysis, том 26, 2003, стр.73-85. Очевидно, что никель обладает более высокой активностью при гидрировании, чем кобальт.

Насколько известно, ранее не было описано использование никеля в качестве промотора к кобальту, однако в документе ЕР-В-1058580 раскрыта возможность применения никеля в качестве модифицирующей добавки для носителей, таких как оксид алюминия, диоксид титана или оксид магния. Установлено, что после прокаливания при температуре до 800°С с целью образования шпинельного соединения, эта модифицирующая добавка способна подавить растворимость носителя катализатора в водной кислоте или нейтральных растворах. В случае, когда модифицирующей добавкой является никель, предполагается, что образуется шпинель NiAl 2 O 4 , что приводит к большей инертности поверхности носителя. Однако не было приведено ни одного примера о влиянии никеля как модифицирующей добавки.

Кроме того, в документе ЕР-В-0296726 описаны формованные частицы оксида алюминия, которые пропитаны раствором нитрата никеля и затем прокалены при температуре около 1200°С для того, чтобы образовалась шпинельная фаза алюмината никеля, которая повышает прочность частиц. Указано, что термическая обработка осуществляется в окислительной среде для того, чтобы предотвратить восстановление никеля до металлического состояния, и, следовательно, Ni не используется в качестве промотора. Кроме того, полученный материал не используется в качестве носителя для катализатора Фишера-Тропша, и нет никаких указаний, что кобальт является активной фазой.

Основными характеристиками катализатора синтеза Фишера-Тропша являются активность, селективность и стабильность. Кроме того, необходимо учитывать стоимость катализатора как с учетом производственных затрат, так и затрат на исходные материалы. Желаемая селективность зависит от того, какие продукты представляют интерес для данного проекта, однако в контексте настоящего изобретения внимание будет сосредоточено на селективности по продукту С5+, что часто используется в качестве показателя образования парафина и, следовательно, потенциала для максимального производства дизельного топлива с помощью гидроизомеризации/крекинга парафина.

Эти характеристики в некоторой степени взаимосвязаны, например высокая активность может дать возможность снизить температуру процесса и тем самым повысить селективность по продукту С5+. Высокая стабильность во времени эксплуатации означает, что начальная активность может быть ослаблена, например, за счет уменьшения содержания кобальта или диспергирования кобальта.

Краткое изложение изобретения

Согласно изобретению разработан нанесенный катализатор Фишера-Тропша, который включает в себя каталитический материал; материал промотора и носителя, причем каталитический материал содержит кобальт в количестве, по меньшей мере, 4% от массы катализатора, по меньшей мере, часть кобальта обладает каталитической активностью в синтезе Фишера-Тропша; промотор содержит никель, причем количество присутствующего никеля меньше, чем количество кобальта; и материал носителя содержит оксид металла, который выбирают или из алюминия, или титана, или циркония.

Предпочтительно, материал носителя состоит из оксида металла, который выбирают или из алюминия, или титана, или циркония.

Предполагается, что материал носителя содержит оксид или алюминия, или титана, или циркония необязательно в сочетании из двух или трех оксидов. Однако диоксид титана может включать небольшое количество оксида алюминия в качестве связующего вещества.

Кроме того, оксид металла материала носителя может включать в себя:

Собственно оксид металла, то есть оксид металла и любое небольшое количество других компонентов, которые случайно попали в материал оксида металла в виде примесей или остатков химикатов от производства самого металлоксидного материала;

Металлоксидный материал, который в ходе получения катализатора был модифицирован путем введения оксидов никеля, кобальта или любого из промотирующих металлов.

В случае оксида алюминия в качестве материала носителя предполагается, что термин "оксид алюминия" также включает в себя смешанный оксид алюминия и кремния, обычно известный как "алюмосиликат", в котором диоксид кремния составляет меньшую часть материала.

Кроме того, материал носителя может включать в себя меньшие количества каталитически неактивных компонентов, таких как добавки, используемые для улучшения или сохранения механической прочности частиц катализатора. Например, оксид алюминия может быть использован в качестве связующего вещества в носителях на основе диоксида титана. Предпочтительно, количество таких каталитически неактивных компонентов составляет меньше, чем 30 мас.%, более предпочтительно, меньше чем 20 мас.%.

Предпочтительно, материал носителя главным образом состоит из оксида металла, который выбирают или из алюминия, или титана, или циркония.

Часть кобальта, который используется при получении катализатора, может войти в состав носителя в виде оксида, необязательно в виде смешанного оксида в сочетании с другими оксидами металлов. Полагают, что кобальт, который удерживается в носителе, обладает низкой каталитической активностью в синтезе Фишера-Тропша (или не обладает активностью). Следовательно, по меньшей мере, часть кобальта должна присутствовать в композиции катализатора в таком количестве и состоянии (физическом и химическом), чтобы каталитическая композиция стала эффективным катализатором для превращения синтез-газа в высшие углеводороды (синтез Фишера-Тропша).

Материал носителя может представлять собой оксид алюминия или диоксид титана, предпочтительно альфа- или гамма-оксид алюминия, наиболее предпочтительно, альфа-оксид алюминия. Необязательно, чтобы материал носителя дополнительно содержал оксид второго металла, выбранного из одного или нескольких из кремния, магния, кобальта и никеля. Носитель может содержать шпинельное соединение, образовавшееся на основе оксида алюминия. Таким шпинельным соединением может быть алюминат никеля.

Кроме того, катализатор может включать в себя другие металлические элементы, такие как необязательные промоторы или модификаторы. В качестве необязательного промотора может быть выбран рений. Предпочтительно, никель находится в виде оксида никеля на поверхности носителя. Количество никеля может составлять меньше, чем 50 мас.%, предпочтительно меньше, чем 30 мас.%, более предпочтительно, меньше, чем 15 мас.% относительно количества кобальта.

Кобальт или никель могут быть введены в металлоксидный носитель, как таковые, или как оксиды, смешанные с другими оксидами металлов в носителе, например, в виде шпинелей с оксидом алюминия. Оксиды таких металлов как кремний, алюминий и магний могут играть роль связующих веществ для модификаторов основных металлоксидных носителей.

Кроме того, изобретение относится к способу получения описанной композиции катализатора, в которой носитель пропитывается соединениями кобальта и никеля, и пропитанную композицию сушат, прокаливают и активируют.

Предпочтительно, пропитанную композицию прокаливают при температурах меньше, чем 600°С, предпочтительно в диапазоне 200-400°С. Предпочтительно, пропитанную композицию прокаливают в такой степени, чтобы в конечной каталитической композиции меньше, чем 50 мас.%, предпочтительно меньше, чем 20 мас.%, никеля, добавленного во время пропитывания, превращались в никелевую шпинель. Предпочтительно, выбирают Ni(NO 3) 2 в качестве соединения никеля в ходе пропитывания металлоксидного носителя. Предпочтительно, пропитанную и прокаленную композицию активируют путем восстановления, предпочтительно в атмосфере, содержащей значительное количество водорода.

Настоящее изобретение также относится способу синтеза углеводородов (Фишера-Тропша), в котором синтез-газ контактирует с катализатором согласно изобретению. Предпочтительно, этот процесс протекает в трех фазах, где реагенты являются газообразными, продукт, по меньшей мере, частично является жидкостью, и катализатор является твердым веществом. Предпочтительно, процесс протекает в колонне реактора с барботируемой суспензией. Обычно Н 2 и СО поступают в суспензию в реакторе, причем суспензия содержит катализатор, взвешенный в жидкости, которая включает в себя продукты взаимодействия Н 2 и СО, при этом катализатор поддерживается во взвешенном состоянии в суспензии, по меньшей мере частично, за счет барботажа газа, подаваемого в суспензию.

Предпочтительно, температура процесса находится в диапазоне 190-250°С, например 200-230°С. Предпочтительно, давление процесса находится в диапазоне 10-60 бар, например от 15 до 30 бар. Предпочтительно, соотношение Н 2 /С в газах, поступающих в реактор синтеза Фишера-Тропша, находится в диапазоне от 1,1 до 2,2, например от 1,5 до 1,95. Предпочтительно, приведенная скорость газа в реакторе находится в диапазоне от 5 до 60 см/с, например от 20 до 40 см/с.

Синтетический продукт процесса Фишера-Тропша последовательно подвергают последующей обработке, которая может быть выбрана из депарафинизации, гидроизомеризации, гидрокрекинга и их сочетаний.

Настоящее изобретение относится к продуктам всех описанных здесь способов и методов.

Неожиданно было установлено, что за счет добавления никеля в качестве промотора к кобальту на поверхности оксида алюминия, активность, стабильность и/или селективность катализатора возрастает в зависимости от состава и типа используемого оксидного носителя. Никель может быть введен путем пропитки водным раствором Ni(NO 3) 2 или любым другим раствором, содержащим никель, например, в виде двухвалентного иона или комплекса. Никель может находиться в том же самом пропитывающем растворе, который содержит кобальт и другие необязательные промоторы, или никель вводят на отдельной стадии пропитки. После пропитывания катализатор сушат и прокаливают при относительно умеренной температуре до 600°С, обычно при 200-400°С, но в любом случае избегают образования любого заметного количества никелевой шпинели. Замысел этого изобретения заключается в том, что никель, по меньшей мере частично, будет восстанавливаться на последующей стадии восстановления для того, чтобы играть активную роль в качестве промотора кобальта - катализатор синтеза Фишера-Тропша. Количество никеля, которое необходимо для достижения промотирующего эффекта и для оптимизации этого эффекта, будет изменяться для различных каталитических систем, в зависимости от таких факторов, как количество кобальта, тип носителя, тип других промоторов (промотора) или модификаторов (модификатора) и способа получения катализатора.

Кроме того, изобретение относится к способу получения углеводородов, который заключается в том, что газообразные H 2 и СО вовлекают в процесс синтеза Фишера-Тропша в присутствии катализатора, который описан выше. Продукт синтеза Фишера-Тропша последовательно подвергают последующей обработке, которая может включать депарафинизацию, гидроизомеризацию, гидрокрекинг, промывку, очистку, фракционирование, смешение, крекинг, риформинг и их сочетания.

Описанный катализатор синтеза Фишера-Тропша пригоден для использования в трехфазном реакторе, особенно в колонне с барботируемой суспензии. Однако дополнительный вариант изобретения заключается в формовании катализатора в любую подходящую форму, такую как сферы, таблетки или экструдаты, с внедрением или без внедрений. Кроме того, добавки или связующие материалы могут быть добавлены, в случае необходимости, в ходе процесса формования. Обычно такие формованные материалы могут иметь размер в диапазоне от 1 до 20 мм и будут использоваться в реакторе с неподвижным слоем или компактном трехфазном реакторе наподобие вскипающего слоя.

В синтезе Фишера-Тропша работают с синтез-газом, содержащим водород и СО, в дополнение к инертным или практически инертным компонентам, таким как CO 2 , метан и/или азот. Кроме того, могут присутствовать значительные количества водяного пара и легких углеводородов, по меньшей мере, за счет самого процесса, наряду с некоторыми олефиновыми и кислородсодержащими побочными продуктами. Температура процесса с использованием катализатора типа кобальта и предназначенным для получения главным образом парафинового воска находится в диапазоне между 190 и 250°С, более типично между 200 и 230°С. Суммарное давление может быть в диапазоне от 10 до 50 бар, типично между 15 и 30 бар. Соотношение потребляемых в этом синтезе водорода и монооксида углерода приблизительно равно 2. Поэтому соотношение Н 2 /СО в сырье не будет сильно отличаться от указанного значения. Однако может быть выгодным использовать сырье с пониженным соотношением Н 2 /СО, например, между 1,5 и 1,95, с целью получения повышенной селективности по продуктам С5+.

Колонна с барботируемой суспензией может включать некоторые признаки внутри оболочки реактора или может быть подсоединена как внешнее устройство. Эти признаки могут включать в себя газораспределительную систему, трубопроводы теплообменника, систему для выделения жидкого продукта из суспензии и, возможно, циркуляционные трубы для принудительной циркуляции с целью усиления возвратного перемешивания и выравнивания градиентов в реакторе. Приведенная скорость потока газа в расчете на полный диаметр реактора обычно находится в диапазоне от 10 до 60 см/с, более типично 20-40 см/с, таким образом обеспечивается работа в проточном турбулентном режиме с взбалтыванием.

В случае необходимости, продукты могут быть сконденсированы и выделены с помощью системы емкостей и колонн разделения, и смешаны для того, чтобы получить желаемые продукты. Большая часть продукта, состоящая из длинноцепочечных углеводородов, может быть обработана в атмосфере водорода при повышенной температуре и давлении в присутствии одного или нескольких катализаторов с целью удаления кислородсодержащих соединений и насыщения олефинов, крекирования цепочки до желаемой длины и изомеризации практически линейных парафинов в разветвленные парафины. Обычно при такой обработке получается синтетическое дизельное топливо или компонент смешанного дизельного топлива, которое не содержит ароматических или сернистых соединений, и кроме того, это топливо имеет очень высокий цетановый индекс (выше 50 или даже выше 70) и желаемую температуру помутнения. Другие продукты, которые могут быть получены в конечном счете, включают нафту, особенно нефтехимическую нафту, базовое масло для производства смазочных материалов и компонентов для синтеза моющих средств, таких как линейные высшие альфа-олефины, наряду с побочными продуктами - сжижаемым нефтяным газом (LPG), альфа-олефинами и кислородсодержащими соединениями.

В зависимости от фактического варианта технологического процесса Фишера-Тропша, различные улучшенные могут быть использованы различными способами. Высокая селективность в отношении С5+ означает, что может быть получена большая доля желаемой синтетической нефти или дизельного топлива за счет топливного газа и что можно уменьшить количество рециркуляционных потоков на заводе. Это приводит к снижению капиталовложений, а также затрат на сырье для данной продукции, например для дизельного топлива. Высокая стабильность и активность катализатора может обеспечить разработку более эффективных реакторов меньших размеров, а также к снижению эксплуатационных затрат в связи с потреблением катализатора. Следует ожидать, что положительный эффект промотирования никелем катализаторов синтеза Фишера-Тропша может быть достигнут в реакторе любого типа, наподобие реактора с неподвижным слоем, реактор-колонна с барботируемой суспензией, реактор с кипящим слоем, псевдоожиженный реактор, монолитный реактор и др.

Теперь настоящее изобретение будет проиллюстрировано следующими не ограничивающими примерами.

Некоторые испытания в неподвижном слое активированных катализаторов были осуществлены в лабораторной установке с четырьмя реакторами. Смешивают приблизительно 1 г катализатора (фракция частиц контролируемого размера) с пятикратным объемом инертных частиц SiC. Восстановление проводят при температуре 350°С в реакторе (in situ), используя водород в качестве восстанавливающего газа. Этап восстановления продолжается 16 часов. В указанных условиях значительная часть доступного кобальта переходит в каталитически активное состояние. Затем осторожно добавляют смесь водорода и СО в соотношении около 2:1. Спустя 20 часов работы в потоке смеси при 210°С и общем давлении 20 бар, устанавливают такую объемную скорость, чтобы получить по данным анализа величину степени превращения СО между 45 и 50%, через 90 часов. Крайне важно проводить сопоставления селективности, а также активности катализаторов при одинаковом значении степени превращения, поскольку концентрация водяного пара, образовавшегося за счет реакции, оказывает сильное влияние на характеристики катализатора.

Все использованные катализаторы имеют номинальное содержание кобальта 12% или 20 мас.% и 0,5 мас.% Re (или рений отсутствует), рассчитано в предположении, что в восстановленных катализаторах кобальт и рений полностью восстановлены. Фактическое содержание металлов, найденное методами рентгеновской флуоресценции (XRF) или индуцируемой плазмы (ICP), могут отличаться вплоть до ±10%, то есть содержание кобальта - между 18 и 22 мас.% от суммарной массы восстановленного катализатора при номинальном составе 20 мас.% Со.

Данные в таблице 1 демонстрируют, что добавка Ni к кобальтовому или Co/Re-катализатору значительно повышает активность. Кроме того, неожиданно оказалось, что Ni может замещать Re в качестве промотора. Еще более неожиданно оказалось, что добавка Ni к кобальтовому катализатору, или в качестве второго промотора, или вместо Re не снижает селективность по C 5 +, как можно было ожидать, поскольку известно, что никель обладает гидрирующей способностью.

Кроме того, Ni оказывает стабилизирующее влияние на активность катализатора.

Результаты типичных испытаний для двух классов носителей обобщены в таблице 2. Отметим, что альфа-оксид алюминия в качестве носителя катализатора может быть получен из гамма-оксида алюминия в результате высокотемпературной обработки в диапазоне температур 1000-1300°С.

Носитель - модифицированный альфа-оксид алюминия, содержащий шпинельное соединение, может быть приготовлен путем пропитки гамма-оксида алюминия или другого оксида алюминия или предшественника оксид алюминия с высокой площадью поверхности раствором двухвалентного иона металла с последующим прокаливанием при высокой температуре. Указанный двухвалентный металл может быть переходным металлом или щелочно-земельным металлом, никель является предпочтительным, и последующее прокаливание может быть осуществлено в диапазоне температур от 1100 до 1250°С, например при 1160°С.

Благоприятное влияние никелевого промотора на стабильность катализатора видно для всех трех использованных материалов носителя. Оптимальная добавка никеля может изменяться для различных каталитических систем, однако, в большинстве случаев, по-видимому, добавка в диапазоне 2-5 мас.% будет достаточной. Это будет соответствовать 10-50 мас.% никеля относительно кобальта или предпочтительно 10-30 мас.%.

Кроме того, эти результаты демонстрируют, что катализатор, содержащий кобальт и никель в равных количествах, приводит к снижению селективности по продуктам С5+. Это неудивительно, поскольку известно, что никель способствует образованию низкомолекулярных углеводородов, особенно метана. Таким образом, когда количество никеля превышает количество кобальта, благоприятное промотирующее влияние никеля снижается, а его эффект как катализатора образования метана становится более выраженным.

Эксперименты с промышленными катализаторами демонстрируют хорошее влияние на стабильность катализатора, содержащего только 10 мас.% Ni относительно Со. Дополнительные испытания катализатора с соотношением Ni/Co=50/50 ат.% показали неблагоприятное влияние Ni в связи со снижением селективности по углеводородам С5+. Этого следовало ожидать, так как при таких высоких концентрациях никеля свойства катализатора синтеза Фишера-Тропша теперь определяются активностью никеля.

На фиг.2 приведен дополнительный пример сопоставления катализатора 18-5А, промотированного 5 мас.% Ni, со стандартным катализатором 10-14А. И в этом случае продемонстрировано, что добавка никеля в кобальт/рениевый пропитывающий раствор, очевидно, приводит к повышенной стабильности катализатора. Наблюдаемые колебания на кривых в области значений ВНР 20-30 часов вызваны регулированием объемной скорости газового потока для того, чтобы согласовать значения степени превращения.

Пример улучшения характеристик для сопоставляемых катализаторов 15-26А (квадраты) и 17-10А (ромбы) приведен на фиг.1а (вверху) и 1b (внизу). Очевидно, что катализатор 17-10А, содержащий никелевый промотор, обладает значительно большей стабильностью, приблизительно в 3 раза. Другой примечательный эффект обнаружен при сравнении значений селективности С5+ (в %) этих двух катализаторов, когда промотирование никелем дает аномальное увеличение селективности в первые 100 часов и затем выравнивается на стабильном уровне. Обычно наблюдается некоторое снижение селективности во времени.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Нанесенный на носитель катализатор синтеза Фишера-Тропша, который включает каталитический материал, промотор и материал носителя, причем каталитический материал содержит кобальт в количестве, по меньшей мере, 4% от массы катализатора и, по меньшей мере, часть кобальта обладает каталитической активностью в синтезе Фишера-Тропша; промотор содержит никель, причем количество присутствующего никеля меньше, чем количество кобальта; и материал носителя содержит оксид металла, выбранного или из алюминия, или титана, или циркония.

2. Катализатор по п.1, в котором материал носителя состоит из оксида металла, выбранного или из алюминия, или титана, или циркония.

3. Катализатор по п.1 или 2, в котором материал носителя, по существу, состоит из оксида металла, выбранного или из алюминия, или титана, или циркония.

4. Катализатор по п.1, в котором материал носителя представляет собой альфа- или гамма-оксид алюминия, предпочтительно альфа-оксид алюминия.

5. Катализатор по п.1, в котором материал носителя дополнительно содержит небольшое количество (относительно количества оксида алюминия, или титана, или циркония) оксида второго металла, выбранного из одного или нескольких кремния, алюминия, магния, кобальта и никеля.

6. Катализатор по п.5, в котором материал носителя содержит шпинельное соединение на основе оксида алюминия.

7. Катализатор по п.6, в котором шпинельное соединение представляет собой алюминат никеля.

8. Катализатор по п.1, который дополнительно включает в себя другие элементы металлов в качестве необязательных промоторов или модификаторов.

9. Катализатор по п.8, который содержит рений или марганец в качестве необязательного промотора.

10. Катализатор по п.1, в котором никель находится в форме оксида никеля на поверхности носителя.

11. Катализатор по п.1, в котором количество никеля меньше, чем 50 мас.% в расчете на количество кобальта.

12. Катализатор по п.11, в котором количество никеля меньше, чем 30 мас.%, относительно количества кобальта.

13. Катализатор по п.11, в котором количество никеля меньше, чем 15 мас.% относительно количества кобальта.

14. Способ получения катализатора, заявленного по любому из предшествующих пп.1-13, в котором носитель пропитывают соединениями кобальта и никеля, и пропитанную композицию сушат, прокаливают и активируют.

15. Способ по п.14, в котором пропитанный носитель прокаливают при температуре ниже 600°С.

16. Способ по п.15, в котором температура прокаливания находится в диапазоне 200-400°С.

17. Способ по п.14, в котором пропитанный носитель прокаливают до такой степени, чтобы в конечной каталитической композиции меньше, чем 50 мас.% никеля, добавленного во время пропитывания, превращались в никелевую шпинель.

18. Способ по п.17, в котором носитель прокаливают до такой степени, чтобы в конечной каталитической композиции превращалось меньше, чем 20 мас.% никеля.

19. Способ по п.14, в котором в качестве источника никеля для пропитывания носителя выбирают Ni(NO 3) 2 .

20. Способ по п.14, в котором пропитанный и прокаленный носитель активируют путем восстановления, предпочтительно в атмосфере, содержащей эффективную концентрацию водорода.

21. Способ синтеза углеводородов (Фишера-Тропша), в котором синтез-газ контактирует с катализатором по любому из пп.1-13.

22. Способ по п.21, в котором синтез протекает в трех фазах, причем реагенты являются газообразными, продукт, по меньшей мере, частично является жидкостью и катализатор является твердым веществом.

23. Способ по п.21 или 22, в котором синтез протекает в колонне реактора с барботируемой суспензией.

24. Способ по п.21, в котором H 2 и СО поступают в суспензию в реакторе, причем суспензия содержит катализатор, взвешенный в жидкости, которая включает в себя продукты взаимодействия H 2 и СО, причем катализатор поддерживается в суспензии во взвешенном состоянии, по меньшей мере, частично за счет барботажа газа, подаваемого в суспензию.

25. Способ по п.21, в котором температура синтеза находится в диапазоне от 190 до 250°С.

26. Способ по п.25, в котором температура синтеза находится в диапазоне от 200 до 230°С.

27. Способ по п.21, в котором давление синтеза находится в диапазоне от 10 до 60 бар.

28. Способ по п.27, в котором давление синтеза находится в диапазоне от 15 до 30 бар.

29. Способ по п.21, в котором соотношение Н 2 /СО в газе, подаваемом в реактор синтеза Фишера-Тропша, находится в диапазоне от 1,1 до 2,2.

30. Способ по п.29, в котором соотношение Н 2 /СО находится в диапазоне от 1,5 до 1,95.

31. Способ по п.21, в котором приведенная скорость газа в реакторе находится в диапазоне от 5 до 60 см/с.

32. Способ по п.31, в котором приведенная скорость газа находится в диапазоне от 20 до 40 см/с.

33. Способ по п.21, в котором продукт синтеза Фишера-Тропша подвергают последующей обработке.

34. Способ по п.33, в котором последующую обработку выбирают из депарафинизации, гидроизомеризации, гидрокрекинга и их сочетаний.

РЕФЕРАТ

Процесс Фишера-Тропша


Введение

углеводород катализатор технологический

История знает немало примеров, когда в силу острой необходимости рождались новые оригинальные подходы к решению давно существующих жизненно важных проблем. Так, в предвоенной Германии, лишенной доступа к нефтяным источникам, назревал жесткий дефицит топлива, необходимого для функционирования мощной военной техники. Располагая значительными запасами ископаемого угля, Германия была вынуждена искать пути его превращения в жидкое топливо. Эта проблема была успешно решена усилиями превосходных химиков, из которых, прежде всего, следует упомянуть Франца Фишера, директора Института кайзера Вильгельма по изучению угля.

В 1926 году была опубликована работа Франца Фишера и Ганса Тропша «О прямом синтезе нефтяных углеводородов при обыкновенном давлении» . В ней сообщалось, что при восстановлении водородом монооксида углерода при атмосферном давлении в присутствии различных катализаторов (железо-оксид цинка или кобальт-оксид хрома) при 270ºС получаются жидкие и даже твердые гомологи метана.

Так возник знаменитый синтез углеводородов из монооксида углерода и водорода, называемый с тех пор синтезом Фишера-Тропша (ФТ). Смесь CO и H2 в различных соотношениях, называемая синтез-газом, может быть получена как из угля, так и из любого другого углеродсодержащего сырья. После изобретения процесса германскими исследователями было сделано множество усовершенствований и исправлений и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов.

Справедливости ради следует отметить, что синтез Фишера-Тропша возник не на пустом месте - к тому времени существовали научные предпосылки, которые базировались на достижениях органической химии и гетерогенного катализа. Еще в 1902 году П. Сабатье и Ж. Сандеран впервые получили метан из СО и H2. В 1908 году Е. Орлов открыл, что при пропускании монооксида углерода и водорода над катализатором, состоящим из никеля и палладия, нанесенных на уголь, образуется этилен .

Первый промышленный реактор был пущен в Германии в 1935 году, использовался Co-Th осажденный катализатор. В 1930-40-е годы на основе технологии Фишера-Тропша было налажено производство синтетического бензина (когазин-I, или синтин) с октановым числом 40÷55, синтетической высококачественной дизельной фракции (когазин-II) с цетановым числом 75÷100 и твердого парафина. Сырьем для процесса служил уголь, из которого газификацией получали синтез-газ, а из него углеводороды. Промышленность искусственного жидкого топлива достигла наибольшего подъема в годы второй мировой войны. К 1945 г. в мире имелось 15 заводов синтеза Фишера-Тропша (в Германии, США, Китае и Японии) общей мощностью около 1 млн. т углеводородов в год. Они выпускали в основном синтетические моторные топлива и смазочные масла. В Германии синтетическое топливо почти полностью покрывало потребности немецкой армии в авиационном бензине. Годовое производство синтетического топлива в этой стране достигло более 124 000 баррелей в день, т.е. около 6,5 миллионов тонн в 1944 году .

После 1945 года в связи с бурным развитием нефтедобычи и падением цен на нефть отпала необходимость синтеза жидких топлив из СО и Н2. Наступил нефтехимический бум. Однако в 1973 году разразился нефтяной кризис - нефтедобывающие страны ОПЕК (Organization of Petroleum Exporting Countries, Организация стран-экспортеров нефти) резко повысили цены на сырую нефть, и мировое сообщество вынуждено было осознать реальную угрозу истощения в обозримые сроки дешевых и доступных нефтяных ресурсов. Энергетический шок 70-х годов возродил интерес ученых и промышленников к использованию альтернативного нефти сырья, и здесь первое место, бесспорно, принадлежит углю. Мировые запасы угля огромны, они, по различным оценкам, более чем в 50 раз превосходят нефтяные ресурсы, и их может хватить на сотни лет .

Кроме этого, в мире имеется значительное количество источников углеводородных газов (как непосредственно залежи природного газа, так и попутный нефтяной газ), которые по тем или иным причинам не используются по экономическим причинам (значительная удаленность от потребителей и, как следствие, большие затраты на транспортировку в газообразном состоянии). Однако мировые запасы углеводородов иссякают, потребности в энергии растут, и в этих условиях расточительное использование углеводородов недопустимо, о чем свидетельствует неуклонный рост мировых цен на нефть с начала 21 века.

В этих условиях синтез Фишера-Тропша снова приобретает актуальность.


1. Химизм процесса


.1 Основные реакции образования углеводородов


Суммарные реакции синтеза углеводородов из оксидов углерода и водорода в зависимости от катализатора и условий процесса можно представить разными уравнениями, но все они сводятся к двум основным . Первая основная реакция - собственно синтез Фишера-Тропша:



Вторая основная реакция - равновесие водяного газа. Этот процесс особенно легко протекает на железных катализаторах как вторичный:



С учетом этой вторичной реакции для ФТ-синтеза на железных катализаторах получается суммарное уравнение:



Реакции (1) и (3) при стехиометрическом, исчерпывающем превращении позволяют получить максимальный выход 208,5 г углеводородов на 1 м3 смеси CO + Н2 при образовании только олефинов.

Реакция (2) может подавляться при низких температурах, малом времени контакта, циркуляции синтез-газа и удалении воды из циркулирующего газа, так что синтез может протекать частично по уравнению (1) с образованием воды и частично по уравнению (3) с образованием СO2.

Из уравнения (1) при удвоенном превращении по уравнению (2) получается суммарное уравнение синтеза углеводородов из СО и Н2O по Кёльбелу-Энгельгардту:



Стехиометрический выход равен 208,5 г [-СН2-] на 1 м3 смеси СО + Н2.

Образование углеводородов из СО2 и Н2 обусловлено уравнением (1) и реакцией, обратной (2):



Стехиометрический выход 156,25 г. [-СН2-] на 1 м3 смеси СO2 + Н2.

В общем виде уравнения выглядят следующим образом:

Для синтеза парафинов



Для синтеза олефинов


(10)

(11)

(12)

(13)


1.2 Побочные реакции


Метан образуется в присутствии кобальтовых и никелевых катализаторов:


(14)


4 на 1 м3 смеси СО + Н2. Вода, образующаяся при этом, конвертируется затем (особенно на железных катализаторах) в присутствии СО в смесь СО2 + Н2, поэтому суммарная реакция образования метана иная:


(15)


Стехиометрический выход 178,6 г СН4 на 1 м3 смеси СО + Н2. При температурах выше 300°С метан образуется также при гидрировании СО2 по суммарному уравнению:


(16)


Стехиометрический выход 142,9 г СН4 на 1 м3 смеси СO2 + H2. Процесс синтеза осложняется образованием углерода по реакции Будуара:


(17)


ФТ-синтез может быть направлен в сторону преимущественного образования спиртов или альдегидов, которые при синтезе углеводородов образуются как побочные продукты. Основные уравнения в случае спиртов следующие


(18)

(19)

(20)


а альдегиды образуются так:


(21)

(22)


Уравнения для других продуктов, образующихся в небольшом количестве (кетоны, карбоновые кислоты, эфиры), опущены.


.3 Механизм реакций


Гидрирование оксида углерода в процессе ФТ представляет собой комплекс сложных, параллельных и последовательных реакций. Первая стадия - одновременная хемосорбция оксида углерода и водорода на катализаторе. Оксид углерода в этом случае соединяется углеродным атомом с металлом, вследствие чего ослабляется связь С-О и облегчается взаимодействие СО и водорода с образованием первичного комплекса. С этого комплекса и начинается рост углеводородной цепи («начало цепи»). В результате дальнейшего ступенчатого присоединения поверхностного соединения, несущего один углеродный атом, углеродная цепочка удлиняется («рост цепи»). Рост цепи заканчивается в результате десорбции, гидрирования или взаимодействия растущей цепочки с продуктами синтеза («обрыв цепи»).

Основные продукты этих реакций - насыщенные и ненасыщенные углеводороды алифатического ряда, а побочные продукты - спирты, альдегиды и кетоны. Реакционноспособные соединения (ненасыщенные углеводороды, альдегиды, спирты и др.) могут при последующих реакциях встраиваться в растущие цепи или образовывать поверхностный комплекс, дающий начало цепи. В дальнейшем реакции между образующимися продуктами приводят к кислотам, эфирам и т.д. Реакции дегидроциклизации, протекающие при более высоких температурах синтеза, приводят к ароматическим углеводородам. Не следует исключать также протекание крекинга или гидрокрекинга более высококипящих углеводородов, первично образовавшихся и десорбированных с катализатора, если они снова адсорбируются на нем.

Механизм реакции, несмотря на десятилетия его изучения, в деталях остается неясен . Впрочем, эта ситуация типична для гетерогенного катализа. Наиболее признанным является механизм с ростом на конце цепи . Молекулы или атомы, переходящие в возбужденное состояние при одновременной хемосорбции оксида углерода и водорода на катализаторе, реагируют с образованием енольного первичного комплекса (схема А1), который также дает начало цепи. Рост цепи (схема А2) начинается с отщепления молекулы Н2O от двух первичных комплексов (с образованием С-С-связи) и отрыва атома С от атома металла в результате гидрирования. Образовавшийся комплекс С2, присоединяя один первичный комплекс, выделяет молекулу Н2O и в результате гидрирования освобождается от металла. Так, путем конденсации и гидрирования происходит ступенчатый рост цепи на каждый последующий С-атом. Начало цепи можно изобразить так:


Схема А1


Рост цепи у крайних С-атомов идет так:


Другая возможность состоит в том, что первоначально связь Me-С в первичном адсорбционном комплексе частично гидрируется, а затем образовавшееся соединение конденсируется с первичным комплексом, что ведет к наращиванию цепи по схеме (А3) или по схеме (А4) и в результате образуется вторичный метилразветвленный адсорбционный комплекс:


Схема А3


Схема А4


Десорбция первичного адсорбционного комплекса, всегда содержащего гидроксигруппу, приводит к альдегидам, а при последующих реакциях - к спиртам, кислотам и эфирам:

Углеводороды могут образоваться в результате дегидратации или расщепления адсорбционных комплексов:


Схема А5


Начало цепи могут также дать спирты и альдегиды после их адсорбции на катализаторе в фенольной форме

или олефины, которые, вероятно, после взаимодействия с водой связаны в енольной форме на катализаторе.

В качестве еще одной возможности роста цепи рассматривается полимеризация СН2-групп. При гидрировании первичного комплекса образуются НО-СН2- и СН2-поверхностные комплексы:



Гидрированный поверхностный комплекс взаимодействует с аналогичным комплексом с отщеплением воды (Б1):


Схема Б1

Точно так же образовавшиеся поверхностные комплексы могут взаимодействовать с первичным, негидрированным комплексом (с образованием С2-аддитивного комплекса по схеме Б2) или реагировать с комплексом после его гидрирования (по схеме Б1):


Схема Б2

Цепь может расти и путем полимеризации первично образовавшихся СН2-групп по схеме В (с изменением заряда на Me):


Вклад полимеризации в процесс роста цепи зависит от соотношения скоростей конденсации и полимеризации.


2. Катализаторы


ФТ-синтез начинается с одновременной хемосорбции СО и Н2 на атомах металла. Для образования такой хемосорбционной связи особенно пригодны переходные металлы с 3d- и 4f-электронами или их соединения внедрения (карбиды, нитриды и т.д.). Катализаторами служат металлы VIII группы: наиболее активен Ru, затем Co, Fe, Ni. Для увеличения поверхности их часто наносят на пористые носители, например, силикагель и глинозем. В промышленности нашли применение только Fe и Co. Рутений слишком дорог, кроме того, его запасы на Земле слишком малы для использования в качестве катализатора в многотоннажных процессах. На никелевых катализаторах при атмосферном давлении образуется в основном метан, при повышении же давления никель образует летучий карбонил и вымывается из реактора .

Кобальтовые катализаторы были первыми катализаторами, используемыми в промышленности (в Германии, а затем во Франции и Японии в 1930-1940-е годы). Типичными для их работы являются давление 1÷50 атм и температура 180÷250°С. В этих условиях образуются, главным образом, линейные парафины. Кобальт обладает значительной гидрирующей активностью, поэтому часть СО неизбежно превращается в метан. Эта реакция резко ускоряется с повышением температуры, поэтому кобальтовые катализаторы не могут использоваться в высокотемпературном процессе ФТ.

Железные катализаторы с середины 1950-х годов используются на заводах синтеза ФТ в ЮАР. По сравнению с кобальтовыми они гораздо более дешевы, работают в более широком интервале температур (200÷360°С), и позволяют получать более широкий спектр продуктов: парафины, низшие ?-олефины, спирты. В условиях синтеза ФТ железо катализирует реакцию водяного газа, что позволяет эффективно использовать получаемый из угля синтез-газ, в котором соотношение СО: Н2 ниже стехиометрического 1: 2. Железные катализаторы имеют более низкое сродство к водороду по сравнению с кобальтовыми, поэтому метанирование не является для них большой проблемой. Однако в силу той же низкой гидрирующей активности поверхность железных контактов быстро зауглероживается. Кобальтовые контакты способны работать без регенерации значительно дольше. Еще одним недостатком железных контактов является их ингибирование водой. Поскольку вода является продуктом синтеза, конверсия СО за один проход невысока. Для достижения высокой степени превращения необходимо организовывать рецикл газа .

И железные, и кобальтовые катализаторы крайне чувствительны к отравлению серой. Поэтому синтез-газ должен быть предварительно очищен от серы, по крайней мере, до уровня 2 мг/м3 . Остаточная сера адсорбируется поверхностью катализатора, так что в итоге продукты синтеза ФТ практически ее не содержат. Это обстоятельство делает синтетическое дизельное топливо, полученное по технологии ФТ, весьма привлекательным ввиду современных жестких экологических требований к транспорту.

При воздействии различных агентов на свежеприготовленные катализаторы группы железа изменяется состав и структура катализаторов, появляются фазы, действительно активные в ФТ-синтезе. В то время как число таких фаз в случае кобальта и никеля относительно небольшое, для железа их много, поэтому каталитическая система усложняется. Железо образует с углеродом или другими металлоидами (азот, бор и т.д.) соединения внедрения различного состава, не утрачивая при этом «металлического» характера, необходимого для ФТ-сннтеза.

Многие исследования подтвердили, что железные катализаторы в ходе ФТ-синтеза изменяются по фазовому составу, степени окисления и углеродным структурам внедрения. Железо восстановленного катализатора к началу синтеза переходит в карбид Fe2C (карбид Хэгга). Одновременно, но медленнее, образуется оксид Fe3O4, доля которого (в расчете на исходное железо) постоянно повышается, в то время как содержание карбида Fe2C в зависимости от времени работы и температуры меняется мало. Содержание свободного углерода возрастает с увеличением времени синтеза. В условиях эксплуатации фазовый состав катализатора находится в равновесии с составом реакционной смеси и только в малой степени зависит от способа его приготовления или предварительной обработки (восстановление, карбидирование) .

В работе Бартоломью показано, что на Co- и Ni - катализаторах СО гидрируется в метан по двум маршрутам, каждый из которых связан с определенными участками на поверхности . А.Л. Лапидус с сотрудниками выдвинули двухцентровую модель Co-катализатора синтеза ФТ. Согласно этим представлениям, центрами первого типа являются кристаллиты металлического Со. На них СО адсорбируется диссоциативно и затем гидрируется в метан. На этих же центрах происходит реакция диспропорционирования CO, приводящая к зауглероживанию катализатора. Центры второго типа представляют собой границу между металлическим Со и оксидной фазой на поверхности катализатора. Они ответственны за рост углеводородной цепи. Оксид углерода адсорбируется на СоO в слабосвязанной ассоциативной форме, затем перемещается на носитель, где образует с водородом поверхностные комплексы типа CHxO. Эти комплексы взаимодействуют друг с другом, образуя полимерные структуры на поверхности. Их гидрирование на СоO дает углеводороды.

Два типа адсорбции СО на поверхности обнаруживаются по спектру термопрограммированной десорбции (ТПД) СО, в котором центрам первого типа отвечает пик с Tmax в области 250-350°С, центрам второго - Tmax < 250°C. По соотношению площадей пиков можно судить о доле каждого из типов центров и, соответственно, предсказывать каталитическое действие контакта.

Эксперименты показали хорошую корреляцию между выходом углеводородов и количеством центров слабосвязанной адсорбции СО на поверхности контакта .

Оксидная фаза Со-катализаторов обычно формируется в процессе их предварительной термообработки (прокаливания и / или восстановления) вследствие взаимодействия оксидного носителя (SiO2, Al2O3 и др.), оксида кобальта и промотора. Катализаторы, не содержащие оксидной фазы, не способны катализировать образование жидких углеводородов из СО и Н2, поскольку не имеют на своей поверхности центров полимеризации.

Таким образом, оксидная фаза катализаторов синтеза ФТ играет определяющую роль в образовании жидких углеводородов, и для создания эффективных катализаторов этого процесса необходимо особое внимание уделять подбору носителя и проведению предварительной термообработки катализатора. Воздействуя на активную часть катализатора путем предварительной термообработки, приводящей к усилению взаимодействия активной фазы с носителем, или вводя в состав катализатора модифицирующие оксидные добавки, можно усилить полимеризационные свойства катализатора и, следовательно, увеличить селективность реакции в отношении образования жидких углеводородов.

Промоторы по принципу действия подразделяются на две группы - структурные и энергетические.

В качестве структурных промоторов используются трудно восстанавливаемые оксиды тяжелых металлов, например Аl2О3, ThO2, MgO и СаО. Они способствуют образованию развитой поверхности катализатора и препятствуют рекристаллизации каталитически активной фазы. Подобную функцию выполняют и носители - кизельгур, доломит, диоксид кремния (в форме свежеосажденного геля гидроксида или силиката калия).

Энергетические промоторы, которые также называют химическими, электронными или активирующими добавками, согласно электронному механизму реакции, увеличивают ее скорость и влияют на селективность. В качестве энергетических промоторов могут действовать также химически активные структурные промоторы. Энергетические промоторы (особенно щелочи) значительно влияют и на текстуру катализатора (поверхность, распределение пор).

В качестве энергетических промоторов для железных катализаторов (независимо от способа получения) чаще всего используют карбонаты щелочных металлов. Железным катализаторам, получаемым разными способами, соответствует неодинаковая оптимальная концентрация щелочной добавки. Осажденные катализаторы не должны содержать более 1% К2СО3 (в расчете на Fe); для определенных осажденных катализаторов оптимум составляет 0,2% К2СО3 (отклонение в 0,1% заметно влияет на активность и селективность). Для плавленых катализаторов указана оптимальная концентрация? 0,5% К2О.

К промоторам, обусловливающим и структурное, и энергетическое влияние, можно отнести медь. Медь облегчает восстановление железа, причем этот процесс в зависимости от количества меди может протекать при температуре, более низкой (вплоть до 150°С), чем без добавки. Далее эта добавка при сушке гидроксида железа (II и III) способствует окислению его до Fe2O3. Медь благоприятствует образованию соединений железа с углеродом и вместе со щелочью ускоряет восстановление железа, образование карбида и углерода. На селективность ФТ-синтеза медь не влияет .


3. Факторы, влияющие на процесс


.1 Качество сырья


Выход и состав продуктов ФТ-синтеза в значительной степени зависит от соотношения СО: Н2 в исходном синтез-газе. Это соотношение в свою очередь существенно зависит от применяемого способа получения синтез-газа. В настоящее время существуют три основных промышленных метода получения последнего.

Газификация угля. Процесс основан на взаимодействии угля с водяным паром:

Эта реакция является эндотермической, равновесие сдвигается вправо при температурах 900÷1000ºС. Разработаны технологические процессы, использующие парокислородное дутье, при котором наряду с упомянутой реакцией протекает экзотермическая реакция сгорания угля, обеспечивающая нужный тепловой баланс:

Конверсия метана. Реакция взаимодействия метана с водяным паром проводится в присутствии никелевых катализаторов (Ni/Al2O3) при повышенных температурах (800÷900ºС) и давлении:

В качестве сырья вместо метана может быть использовано любое углеводородное сырье.

Парциальное окисление углеводородов. Процесс заключается в неполном термическом окислении углеводородов при температурах выше 1300ºС:

Способ также применим к любому углеводородному сырью.

При газификации угля и парциальном окислении соотношение СО: Н2 близко к 1: 1, тогда как при конверсии метана оно составляет 1: 3 .

В целом, можно отметить следующие закономерности :

в случае исходной смеси, обогащенной водородом, получаются предпочтительно парафины, причем термодинамическая вероятность их образования уменьшается в ряду метан > низкомолекулярные н-алканы > высокомолекулярные н-алканы;

синтез-газ с высоким содержанием оксида углерода ведет к образованию олефинов и альдегидов, а также способствует отложению углерода. Вероятность образования алкенов уменьшается в ряду высокомолекулярные н-олефины > низкомолекулярные н-олефины.


.2 Температура


ФТ-синтез - сильно экзотермическая реакция. Образующееся тепло составляет до 25% от теплоты сгорания синтез-газа. Скорость синтеза и одновременно выход продукта с единицы объема катализатора за единицу времени повышаются с увеличением температуры. Однако скорость побочных реакций при этом также возрастает. Поэтому верхняя температура ФТ-синтеза ограничена в первую очередь нежелательным метано- и коксообразованием . Особенно сильное увеличение выхода метана при повышении температуры наблюдается для Co катализаторов.

Как правило, процесс проводится при температуре 190÷240°C (низкотемпературный вариант, для Co и Fe катализаторов) или 300÷350°C (высокотемпературный вариант, для Fe катализаторов) .


.3 Давление


Так же, как при повышении температуры, с ростом давления растет и скорость реакций. Кроме этого, повышение давления в системе способствует образованию более тяжелых продуктов. Типичными значениями давлений для промышленных процессов являются 0,1÷5 МПа. Так как повышенное давление позволяет увеличить производительность синтеза, для экономической эффективности процесс проводят при давлении 1,2÷4 МПа.

Совместное влияние температуры и давления, а также природы катализатора на выход различных продуктов удовлетворяет распределению Андерсона-Шульца-Флори (ASF), описываемому формулой

где Pn - массовая доля углеводорода с углеродным номером n;

K1/(k1+k2), k1, k2 - константы скорости роста и обрыва цепи соответственно.

Метан (n=1) всегда присутствует в большем количестве, чем предписывается распределением ASF, поскольку образуется независимо по реакции прямого гидрирования. Величина ? снижается с ростом температуры и, как правило, возрастает с ростом давления. Если в реакции образуются продукты разных гомологических рядов (парафины, олефины, спирты), то распределение для каждого из них может иметь свою величину ?. Распределение ASF накладывает ограничения на максимальную селективность по любому углеводороду или узкой фракции .

Графически распределение ASF представлено на рисунке 1.

.4 Объемная скорость


Повышение объемной скорости (или уменьшение времени контакта) газа не благоприятствует реакциям, протекающим с более низкой скоростью. К ним принадлежат реакции, идущие на поверхности катализатора, - отщепление кислорода, гидрирование олефинов и рост углеродной цепи. Поэтому с уменьшением среднего времени контакта в продуктах синтеза повышается количество спиртов, олефинов и соединений с короткой цепью (газообразные углеводороды и углеводороды из интервала выкипания бензиновой фракции) .


4. Разновидности технологических схем


Главной технической проблемой синтеза Фишера-Тропша является необходимость съема большого количества теплоты, выделяющейся в результате сильно экзотермических химических реакций. Конструкция реактора во многом определяется также видом продуктов, для получения которых он предназначен. Существуют несколько разновидностей конструкции реакторов для ФТ-синтеза, которые определяют ту или иную технологическую схему процесса.


.1 Схема с многотрубным реактором и стационарным слоем катализатора


В таких реакторах протекает низкотемпературный процесс в газовой фазе. Конструкция многотрубного реактора представлена на рисунке 2.

Многотрубные реакторы просты в эксплуатации, не создают проблем с отделением катализатора, могут использоваться для получения продуктов любого состава. Однако они имеют целый ряд недостатков: сложность в изготовлении, большая металлоемкость, сложность процедуры перегрузки катализатора, значительный перепад давления по длине, диффузные ограничения на крупных зернах катализатора, сравнительно невысокий теплоотвод .

Одна из возможных технологических схем высокопроизводительного ФТ-синтеза в многотрубном реакторе представлена на рисунке 3.

Технологические параметры представлены в таблице 1, состав получаемых продуктов - в таблице 2.


Таблица 1 - Условия работы промышленных установок газофазного синтеза Фишера-Тропша на стационарном слое катализатора

ПараметрЗначениеДавление, МПа2,3÷2,5Температура,°С220÷250Соотношение Н2: СО в исходном газе1,3: 2Соотношение циркуляционного и исходного газа2,5Число ступеней1÷2Состав катализатора, масс. ч.Fe (100)Сu (5)К2O (5)SiO2 (25)Продолжительность работы катализатора, мес.9÷12

Таблица 2 - Типичный состав углеводородов, получаемых в промышленных синтезах Фишера-Тропша на стационарном слое катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. углеводороды: С127 С345 фракции 30-165°С8,5 165-230°С5 230-320°С7,6 320-460°С23 >460°С18 кислородсодержащие соединения4Степень превращения смеси СО + Н2, %73Выход углеводородов С2+, г на 1 м3 смеси СО + Н2140

.2 Схема с псевдоожиженным слоем катализатора


Реакторы с кипящим слоем обеспечивают хороший теплоотвод и изотермическое протекание процесса. Диффузные ограничения в них минимальны за счет высокой линейной скорости газа и использования мелкодисперсного катализатора. Однако такие реакторы сложно вывести на рабочий режим. Проблемой является отделение катализатора от продуктов. Отдельные узлы подвергаются сильной эрозии. Принципиальным ограничением реакторов с кипящим слоем является невозможность получения в них тяжелых парафинов . На рисунке 4 представлена технологическая схема ФТ-синтеза в реакторе с псевдоожиженным слоем катализатора.


Рисунок 4. Схема процесса Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора:

3 - подогреватели; 2 - генератор синтез-газа; 4 - теплообменники; 5 - промывная колонна; 6 - реактор; 7 - циклон; 8 - сепаратор.


Технологические параметры процесса при работе по рассматриваемой схеме представлены в таблице 3, состав получаемых продуктов - в таблице 4.


Таблица 3 - Условия работы промышленной установки синтеза Фишера-Тропша в реакторе с псевдоожиженным слоем катализатора

ПараметрЗначениеДавление, МПа2,8Температура,°С315Соотношение Н2: СО в исходном газе3: 1Соотношение циркуляционного и исходного газа1,5

Таблица 4 - Типичный состав углеводородов, получаемых в реакторе с псевдоожиженным слоем катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс. С29 С3429 фракции 30-200°С40 200-320°С9 >320°С3 кислородсодержащие соединения10Степень превращения СО, %95÷98Выход углеводородов С2+, г на 1 м3 смеси СО + Н2160

.3 Схема с циркулирующим взвешенным порошкообразным катализатором


Данная схема также относится к высокотемпературному процессу Ф-Т. Технологическая схема процесса Фишера-Тропша в потоке взвешенного порошкообразного катализатора приведена на рисунке 5.


Рисунок 5. Схема ФТ-синтеза в потоке взвешенного порошкообразного катализатора:

Печь; 2 - реактор; 3 - холодильники; 4 - колонна-сепаратор для промывки маслом; 5 - конденсатор; 6 - разделительная колонна; 7 - колонна для промывки получаемого бензина; 8 - колонна для промывки газа.


Технологические параметры синтеза в случае проведения процесса в потоке взвешенного порошкообразного катализатора представлены в таблице 5, состав получаемых продуктов - в таблице 6.


Таблица 5 - Условия работы промышленных установок синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ПараметрЗначениеДавление, МПа2,0÷2,3Температура,°С300÷340Соотношение Н2: СО в исходном газе в суммарном газе (2,4÷2,8): 1 (5÷6): 1Соотношение циркуляционного и исходного газа2,0÷2,4Продолжительность работы катализатора, сут.?40

Таблица 6 - Типичный состав углеводородов, получаемых на установке синтеза Фишера-Тропша в потоке взвешенного порошкообразного катализатора

ХарактеристикаЗначениеСостав продукта (средние данные), % масс.метан этилен этан пропилен пропан бутилены бутаны С512 С1318 С1921 С2230 С31+ кислородсодержащие соединения10 4 6 12 2 8 1 39 5 1 3 2 7Степень превращения смеси СО + Н2, %77÷85


4.4 Схема с барботажным (slurry) реактором

Реактор барботажного типа, который также называют пузырьковым (slurry), считается наиболее эффективным для синтеза ФТ. В этом аппарате синтез-газ проходит снизу вверх через слой высококипящего растворителя, в котором суспензирован мелкодисперсный катализатор. Подобно реакторам с кипящим слоем, в пузырьковом реакторе обеспечиваются эффективный массообмен и теплоотвод. В то же время в нем возможно получение тяжелых продуктов, как в трубчатом аппарате . На рисунке 6 представлена схема работы такого реактора.

Технологическая схема с применением барботажного реактора представлена на рисунке 7.


Рисунок 7. Схема ФТ-синтеза в барботажном реакторе:

Компрессор; 2 - расходомеры;.3 - диафрагмы; 4 - пробоотборники; 5 - реактор: 6 - паросборник; 7 - теплообменник; 8 - продуктовые емкости; 9 - разделительные емкости; 10 - насосы; 11 - холодильник; 12 - установка для выделения СО2; 13 - фильтр; 14 - аппарат для приготовления катализаторной суспензии; 15 - центрифуга; 16 - емкость для масла.


На примере данной схемы можно отметить большую технологическую гибкость синтеза ФТ, когда варьируя качеством сырья и технологическими показателями можно получать продукт требуемого фракционного состава (таблица 7).


Таблица 7 - Состав продуктов при различных режимах ведения ФТ-синтеза в барботажном реакторе

ПоказателиПолучение разных продуктовс низкой мол. массойсо средней мол. массойс высокой мол. массойВыход суммарного продукта С3+, г на 1 м3 смеси СО+Н2162172182Содержание в суммарном продукте С3+, % С3429,66,92,2 С5-190°С63,040,07,1 190-320°С6,225,78,3 320-450°С1,218,333,0 > 450°С-9,149,4

Значения технологических параметров для рассматриваемой схемы приведены в таблице 8.


Таблица 8 - Условия работы промышленных установок синтеза Фишера-Тропша с барботажным реактором

ПараметрЗначениеДавление, МПа1,0÷1,2Температура,°С210÷280Соотношение Н2: СО в исходном газе1: (1,3÷1,5)Объемная скорость, ч-1110÷190Степень превращения СО смеси СО + Н2, %89÷92 87÷90Выход углеводородов С1+, г на 1 м3 смеси СО + Н2176÷178

Для получения низкомолекулярных углеводородов применяются более высокие температура и объемная скорость, но пониженное давление. Если же требуются высокомолекулярные парафины, то указанные параметры соответственно меняют .


5. Современные производства


Сравнительно невысокие мировые цены на нефть, незначительно колеблющиеся около $20 (в пересчете на стоимость доллара США 2008 года) после второй мировой войны до 70-х годов 20 века , долгое время делали строительство крупных производств, основанных на синтезе Фишера-Тропша, нерентабельными. Многотоннажные производства синтетических углеводородов из синтез-газа существовали и развивались лишь в ЮАР, однако и это было обусловлено не экономической выгодой, а политической и экономической изоляцией страны при режиме апартеида. И в настоящее время заводы компании Sasol (South African Coal, Oil and Gas Corporation) остаются одними из самых производительных в мире .

В современных условиях предприятия, использующие процесс ФТ, способны рентабельно работать при цене на нефть более $40 за баррель. В случае, если по технологической схеме предусматривается улавливание и хранение либо утилизация углекислого газа, образующегося при синтезе, эта цифра возрастает до $50÷55 . Так как мировые цены на нефть не опускались ниже этих отметок с 2003 года , строительство крупных предприятий по производству синтетических углеводородов из синтез-газа не заставило себя ждать. Примечательно, что большинство проектов осуществляется в Катаре, богатым природным газом.

Ниже описаны крупнейшие действующие и строящиеся предприятия GTL (Gas to liquid, «газ в жидкость»), основанные на синтезе ФТ.


.1 Sasol 1, 2, 3. PetroSA


Южноафриканской компанией Sasol накоплен огромный опыт в промышленном применении синтеза ФТ. Первый пилотный завод Sasol 1 был пущен в 1955 году, сырьем для которого служит синтез-газ, получаемый методом газификации угля. Ввиду действия торговых эмбарго в отношении ЮАР в 50-х - 80-х годах 20 века, для обеспечения страны энергоносителями в 1980 и 1984 годах были введены в строй два более крупных производства - Sasol 2 и Sasol 3 .

Помимо этого компания Sasol является лицензиаром процесса GTL для южноафриканской государственной нефтяной компании PetroSA. Ее предприятие, также известное как Mossgas, работает с 1992 года. Сырьем является природный газ, добываемый в открытом море .

На протяжении многолетней эксплуатации производств Sasol инженеры компании стремились улучшить технологию синтеза, в работе были опробованы все четыре типа реакторов, описанных в разделе 4, начиная с многотрубных реакторов, работающих при атмосферном, а позже при повышенном давлении, и заканчивая барботажными реакторами.

Предприятия Sasol поставляют на рынок как моторные топлива, так и сырье для нефтехимии (олефины, спирты, альдегиды, кетоны и кислоты, а также фенол, крезолы, аммиак и серу) .



Данное предприятие введено в эксплуатацию в 2007 году в Катаре. Лицензиаром выступили совместно компании Sasol и Chevron, сформировав международное совместное предприятие Sasol Chevron Limited.

Исходный природный газ подвергается паровому риформингу, после чего полученный синтез-газ подается в барботажный реактор, где проходит низкотемпературный ФТ-синтез. Продукты синтеза подвергаются гидроочистке и гидрокрекингу.

Товарными продуктами являются экологически чистое дизельное топливо (менее 5 ppm серы, менее 1% ароматических углеводородов, цетановое число около 70), а также нафта, используемая как сырье для пиролиза .


5.3 SMDS


Компания Shell в 1993 году ввела в эксплуатацию свой завод Shell MDS (Middle Distillate Synthesis, синтез средних дистиллятов) в Малайзии. В основе процесса лежит современная модификация процесса ФТ. Синтез-газ для проведения реакции ФТ получают парциальным окислением природного газа. Процесс осуществляется в многотрубных реакторах, заполненных высокопроизводительным катализатором. Продукты синтеза (преимущественно высокомолекулярные алканы) подвергаются гидрокрекингу и гидроизомеризации.

Производство направлено на получение высококачественных синтетических дизельного топлива и керосина, а также парафинов .


.4 Pearl


Предприятие Pearl включает в себя крупнейшее в мире производство GTL, созданное компанией Shell совместно с Qatar Petroleum. Первая очередь комплекса пущена в мае 2011 года, выход на полную мощность запланирован на 2012 год . Технологический процесс, в общем, является развитием технологий, используемых на заводе SMDS. Цепочка процессов идентична: природный газ, добытый на шельфовых месторождениях, подвергается частичному окислению с получением смеси Н2 и СО; затем синтез-газ претерпевает превращения в многотрубных реакторах (24 аппарата) в парафины с длинной цепью. Последние в результате гидрокрекинга и разделения дают товарные продукты: моторные топлива, нафту (сырье для нефтехимии), а также в роли побочных продуктов базовые смазочные масла и парафины .


5.5 Escravos


Данный GTL-проект, осуществляемый в Нигерии, изначально разрабатывался совместно Sasol и Chevron Corporation, как и Oryx. Однако из-за существенно возросших затрат на осуществление проекта Sasol покинул его. В настоящий момент предприятие строится с участием Chevron Nigeria Limited и Nigerian National Petroleum Company. Ввод в эксплуатацию завода запланирован на 2013 год. Исходным сырьем является природный газ. Собственно ФТ-синтез будет осуществляться в барботажных реакторах. Отличительной чертой технологической схемы является использование фирменного процесса ISOCRACKING компании Chevron, благодаря которому крекируются до легких и средних дистиллятов и облагораживаются синтетические парафины - продукты ФТ-синтеза.

Товарной продукцией являются моторные топлива (в первую очередь дизельное), нафта, а также кислородосодержащие продукты - метанол и диметиловый эфир .

В таблицу 9 сведена общая информация об описанных выше производствах синтетических углеводородов .


Таблица 9 - Современные мощности GTL в мире

КомпанияРазработчик технологииМесто расположенияМощность, баррелей / суткиSasol 1SasolСасолбург, ЮАР5600Sasol 2, 3SasolСекунда, ЮАР124000Petro SA (бывший Mossgas)SasolМоссел Бей, ЮАР22500SMDSShellБинтулу, Малайзия14000EscravosSasol, ChevronЭскравос, Нигерия34000 (проект)OryxSasol, ChevronРас Лаффан, Катар33700PearlShellРас Лаффан, Катар70000


Кроме этого, перспективным является строительство заводов ФТ-синтеза в Алжире (до 33 тыс. баррелей в день) и Иране (до 120 тыс. баррелей в день).

Имеется информация о совместной разработке Sasol и норвежской Statoil установок, расположенных на морских платформах или даже плавучих заводов по переработке природного и попутного газа в жидкие углеводороды. Однако про осуществление этого проекта ничего не известно .

Разработан базовый проект и ведутся дальнейшие переговоры по строительству в Узбекистане завода GTL. На нем планируется перерабатывать метан, производимый Шуртанским газохимическим комплексом, по технологии компаний Sasol и Petronas .

Компании ExxonMobil, Syntroleum, ConocoPhillips занимаются исследованиями в области GTL-процессов, однако, эти фирмы пока имеют в своем распоряжении лишь пилотные установки, используемые для исследовательских целей .


Заключение


Синтез Фишера-Тропша позволяет получать из природных горючих ископаемых, используемых в настоящее время преимущественно как топливо для тепло- и электростанций (уголь, природный газ) или вовсе сжигаемых на факелах либо выбрасываемых в атмосферу (попутный нефтяной газ), высококачественные моторные топлива и ценное сырье для последующего химического синтеза. Преимущественно по первому пути идет развитие технологий компании Shell, процессы же фирмы Sasol сочетают оба направления. На рисунке 8 представлены возможные варианты переработки первичных продуктов ФТ-синтеза.


Качество получаемого в процессе ФТ по технологии Sasol Chevron дизельного топлива представлено в таблице 10 .


Таблица 10 - Характеристика синтетического ДТ

ХарактеристикаСинтетическое ДТТребования стандарта EN 590:2009Плотность при 15ºС, кг/м3780820÷845Температура выкипания 95% фракции, ºС355?360Кинематическая вязкость при 40ºС, мм2/с2,02,0÷4,5Температура вспышки, ºС>55>55Цетановое число>70>51Содержание серы, мг/кг<1?10Содержание полициклических ароматических углеводородов, % масс.<0,01?11Температура помутнения-23-Содержание насыщенных углеводородов, % об.>99-

Удачный либо неудачный опыт эксплуатации современных GTL-производств, в первую очередь Pearl - самого современно и крупного GTL-предприятия - вероятно определит будущее развитие технологии и заводов, использующих процесс ФТ. У GTL-технологии, помимо нестабильных цен на нефть, есть другие существенные проблемы.

Первая из них - очень высокая капиталоемкость. По расчетам, вложение в завод производительностью 80 тыс. баррелей синтетических углеводородов в день, исходным сырьем для которого является уголь, составляют от $7 млрд. до $9 млрд. Для сравнения: НПЗ такой же производительности обойдется в $2 млрд. Большая часть капитальных затрат (60÷70%) приходится на комплекс получения синтез-газа . Реальные цифры подтверждают расчеты: затраты на возводимый в Нигерии Escravos GTL с запланированных $1,7 млрд. поднялись до $5,9 млрд. Строительство Pearl GTL обошлось Shell в $18-19 млрд. Осуществление в Катаре грандиозного проекта по строительству GTL-завода мощностью 154 тыс. баррелей в сутки синтетических углеводородов было отклонено фирмой-разработчиком Exxon Mobil. В проект планировалось инвестировать $7 млрд., чего явно оказалось бы недостаточно. Однако компания объяснила отказ от проекта «перераспределением ресурсов» в пользу строительства газоперерабатывающего предприятия Barzan, также расположенного в Катаре .

Другой весомой проблемой является влияние на экологию. Как показано в разделе 1, в процессе ФТ образуется диоксид углерода, который является парниковым газом. Как считается, выбросы СО2 являются причиной глобальных климатических изменений, и количество выбрасываемого диоксида углерода ограничивается квотами на выбросы парниковых газов. В цепочке добыча-переработка-потребление для синтетических моторных топлив выбросы углекислого газа примерно вдвое превышают таковые для нефтяных топлив . Существуют различные технологии по утилизации углекислого газа (от хранения в подземных резервуарах до закачки в газо- или нефтеносный пласт), но они существенно удорожают и без того недешевые GTL-проекты. Однако стоит отметить, что другие вредные выбросы от непосредственно сгорания синтетических топлив в ДВС на 10÷50% ниже, чем для нефтяных топлив (таблица 11) .


Таблица 11 - Вредные выбросы при сгорании синтетического и традиционного ДТ

ВыбросыСинтетическое ДТ г/кВт·чНефтяное ДТ г/кВт·чУглеводороды (НС)0,210,25Монооксид углерода (CO)0,670,94Диоксид углерода (CO2)376308Оксиды азота (NOx)6,037,03Несгоревшие частицы (сажа)0,080,15

К экологической же проблеме можно отнести потребность в большом количестве воды для осуществления газификации угля, если последний используется в качестве исходного сырья. Зачастую климат в странах, богатых углем, но бедных нефтью, является засушливым. Однако на второй стадии GTL-производства - собственно синтез ФТ - вода является побочным продуктом, который после очистки можно использовать в технологическом процессе. Такая методика используется на заводе Pearl. Так как для получения синтез-газа на этом предприятии вода не нужна, она используется для выработки пара высокого давления при охлаждении реакторов ФТ. Получаемый водяной пар приводит компрессоры и электрогенераторы .

Рынок GTL является растущим рынком. Основными факторами, движущими этот рынок, являются настоятельная потребность в монетизации трудно утилизируемых другими способами (трубопроводным транспортом или сжижением) больших запасов природного, попутного нефтяного газа и газа угольных месторождений на фоне все возрастающей мировой потребности в жидких углеводородах и ужесточающихся требованиях к экологическим характеристикам углеводородного топлива. Освоение GTL-технологий является хорошей рыночной возможностью для тех стран и компаний, которые располагают большими запасами природного или попутного газа и угля. GTL-производства могут не конкурировать, а дополнять такие направления в отрасли, как LNG (Liquefied natural gas, сжиженный природный газ), производства экологически чистых топлив, высококачественных базовых масел.


Список использованных источников


1.Химические вещества из угля. Пер. с нем. /Под ред. И.В. Калечица - М.: Химия, 1980. - 616 с, ил.

2.Караханов Э.А. Синтез-газ как альтернатива нефти. II. Метанол и синтезы на его основе // Соросовский образовательный журнал. - 1997. - №12. - С. 68.

3.The Early Days of Coal Research [Электронный ресурс]. - Режим доступа: #"justify">4.Процесс Фишера - Тропша [Электронный ресурс]. - Режим доступа: #"justify">.Обзор катализаторов синтеза Фишера-Тропша [Электронный ресурс]. - Режим доступа: #"justify">6.Dry M.E. Applied Catalysis A: General. - 2004. - №276, - Р. 1.

7.11. Сторч Г., Голамбик Н., Голамбик Р. Синтез углеводородов из окиси углерода и водорода. - М.: И.Л., 1954. - С. 257.

8.Lee W.H., Bartolomew C.H.J. Catal. - 1989. - №120. - Р. 256.

.Wisam Al-Shalchi. Gas to liquids technology (GTL). - Baghdad - 2006.

10.Нефть [Электронный ресурс]. - Режим доступа: #"justify">11.Matthew Dalton. Big Coal Tries to Recruit Military to Kindle a Market. // The Wall Street Journal. - 2007. - Sept. 11.

.Explore Sasol - Sasol history [Электронный ресурс]. - Режим доступа: #"justify">.The PetroSA GTL Refinery & LTFT Technology Development [Электронный ресурс]. - Режим доступа: #"justify">.Oryx GTL [Электронный ресурс]. - Режим доступа: #"justify">.Shell MDS Technology and Process [Электронный ресурс]. - Режим доступа: #"justify">.Inside Shells Bintulu GTL Plant [Электронный ресурс]. - Режим доступа: #"justify">17.First cargo of Pearl GTL products ship from Qatar [Электронный ресурс]. - Режим доступа: #"justify">.Gas-to-liquids (GTL) processes [Электронный ресурс]. - Режим доступа: #"justify">19.Escravos Gas-to-Liquids Project, Niger Delta [Электронный ресурс]. - Режим доступа: #"justify">20.Обзор рынка GTL [Электронный ресурс]. - Режим доступа: #"justify">.Узбекистан развивает сотрудничество с компаниями «Сасол» и «Петронас» [Электронный ресурс]. - Режим доступа: #"justify">.Жемчужина GTL [Электронный ресурс]. - Режим доступа: #"justify">23.Exxon Mobil, Qatar Unplug GTL Project [Электронный ресурс]. - Режим доступа: http://www.imakenews.com/lng/e_article000760746.cfm? x=b96T25P, bd1Rfpn

Синтез Ф.Фишера-Г.Тропша можно рассматривать как восстановитель­ную олигомеризацию оксида углерода на гетерогенных катализаторах, ведущую к образованию смеси различных алкенов и алканов.

В качестве катализаторов использовались кобальт, железо, рутений, промотированные различными добавками. Состав продуктов зависит от природы катализатора, условий реакции и изменяется в очень широких пределах. При взаимодействии СО и Н 2 на кобальте, осажденном на ки­зельгуре и содержащем в качестве промоторов диоксид тория ТhО 2 и МgO, при 200°С и давлении 1-1,5 МПА (10-15 атм) получается около 80% парафинов нормального строения, 15% неразветвленных алкенов и около 5% разветвленных алканов. Получающаяся смесь углеводородов состоит из 45% низкого качества бензина, 23% дизельного топлива, 3% машинного масла и 27% высших твердых парафинов. Во время второй мировой войны этим способом в Германии и Японии осуществлялся синтез моторного топ­лива. Общая мощность производства в 1943-1944 годах достигала 1 млн тонн в год. Более дешевые и доступные железные катализаторы активны и стабильны в широком интервале температур и давлений. На осажденных железных катализаторах, содержащих SiO 2 , К 2 О и медь, получают смесь бензина (32%), 20% дизельного топлива и высших парафинов (48%), причем их соотношение меняется с изменением температуры. Бензин, получаемый на железных катализаторах, имеет лучшие моторные характеристики, чем бензин, производимый на кобальтовых катализаторах. Для получения высокомолекулярных парафинов ("полиметилена") - линейных алканов с молярной массой до 10 6 эффективным оказался мелкодисперсный рутений

при 150-200 о и давлении до 1000-2000 атм. Твердый парафин, называемый церезином, находит ограниченное применение в микробиологической и медицинской промышленности.

После окончания второй мировой войны установки по производству бензина и дизельного топлива по Фишеру-Тропшу в Европе и Японии были демонтированы из-за высокой себестоимости угля как источника топлива и высокой себестоимости процесса Фишера-Тропша. В настоящее время промышленное производство бензина и дизельного топлива этим мето­дом осуществляется только в Южной Африке, не имеющей собственных неф­тяных ресурсов и доступа к мировым источникам нефти. Добыча нефти, со­гласно предварительным оценкам, достигнет апогея в начале XXI столетия и затем начнет непрерывно уменьшаться. В перспективе добыча угля должна превзойти добычу нефти, и синтез углеводородов различных классов станет базироваться на угле. Несомненно, однако, что техно­логия получения жидкого топлива из угля в будущем будет принципиально иной, чем в процессах Фишера-Тропша.

28.8.3. Производство метанола

Производство метанола на основе синтез-газа впервые было осу­ществлено в Германии в начале 1920-х годов.

Первоначально в качестве катализатора использовали смесь ZnO и Cr 2 O 3 , а саму реакцию проводили при 350-400° и высоком давлении до 300 атм. Это обеспечивало 10-15%-ную конверсию синтез-газа в метанол, в резуль­тате рециркуляции выход может быть повышен до 85%. Условия проведения процесса и аппаратура в этом случае такие же, как и при синтезе амми­ака, поэтому производства метанола и аммиака часто объединяют (азотно-туковые заводы).

В 1960 году фирма ICI разработала процесс, где в качестве ката­лизатора используется смесь CuO и ZnO, нанесенная на глинозем.

В настоящее время основное количество метанола получают каталитическим гидрированием СО при низком давлении на медно-цинковом катализаторе.

Традиционные, давно сформировавшиеся направления использования метанола заключаются в получении формальдегида, метиламинов, метилхлорида, метил-трет -бутилового эфира, диметилтерефталата. Около 40% производимого метанола превращают в формальдегид в результате дегид­рирования или окисления.

Дегидрирование метанола эндотермично, а окисление сопровождается вы­делением тепла, поэтому в промышленности, как правило, объединяют оба эти процесса. Смесь воздуха и метанола, взятого с большим из­бытком, пропускают над серебром при 600-650°. Газы, вы­шедшие из реактора, охлаждают и растворяют в воде. Метанол отделя­ют и рециркулируют, выход формальдегида составляет 86-90%. Формаль­дегид получают в виде 37%-ного раствора в воде. Формальдегид находит применение в производстве феноло-формальдегидных смол.

При взаимодействии метанола в аммиаком при 350-500 о С и давлении 20 атм в присутствии Аl 2 O 3 происходит образование смеси метил-, диметил- и триметиламина.

Метилхлорид образуется при взаимодействии метанола и хлороводорода в газовой фазе при 300 о С в присутствии ZnCl 2 или CuCl 2 как катали­затора.

Производство диметилтерефталата и метил-трет -бутилового эфира описа­но в других разделах этой главы.

В последние двадцать лет отчетливо проявляется большой и все возрастающий интерес к метанолу как исходному реагенту для самых разнообразных химических превращений. Этот интерес вызван тем, что он дешев и может быть получен практически из любого углеродсодержащего источника - нефти, газа, угля, торфа и даже бытового мусора, которые можно превратить в смесь СО и Н 2 . Из метанола в промышленных условиях может быть получено большое число практически важных ве­ществ с применением как гетерогенного, так и в особенности гомоген­ного катализа. Перечислим только некоторые наиболее перспективные направления производства на основе метанола. Это производства уксус­ной кислоты, уксусного ангидрида, этанола, этиленгликоля, метилметакрилата, метилформиата, диметилформамида, некоторых видов топлива и т.д. Некоторые из них уже эксплуатируются в промышленном масштабе, другие находятся в стадии внедрения, а остальные разрабатываются большим числом исследовательских групп и найдут применение, по-види­мому, в недалеком будущем. Возможно, в XXI столетии метанол, наряду с этиленом, станет одним из главных полупродуктов крупнотоннажного органического синтеза.

Синтез Фишера-Тропша

Технология получения синтетического топлива из углеводородного газа GTL (gas-to-liquid, т. е. «газ-в-жидкость») начала развиваться в 20-х годах прошлого столетия благодаря изобретению реакции синтеза Фишера-Тропша. В то время в богатой углем, но бедной нефтью Германии остро стоял вопрос производства жидкого топлива. После изобретения процесса германскими исследователями Францем Фишером и Гансом Тропшом было сделано множество усовершенствований и исправлений, и название «Фишер-Тропш» сейчас применяется к большому количеству сходных процессов. Технологии GTL, как таковой, скоро сто лет, и развивалась она долгие годы как вынужденная альтернатива нефтедобыче для стран, лишенных доступа к нефти. Развитие GTL шло поэтапно, поколениями. Первое поколение GTL ответственно за широко известный во время Великой Отечественной немецкий эрзац-бензин. Второе развивалось в ЮАР как ответ международному эмбарго. Третье - в странах Запада после энергетического кризиса 1973 г. С каждым новым поколением технологии капитальные затраты уменьшались, выход моторного топлива с тонны сырья увеличивался, а побочных продуктов становилось все меньше.

Развитие технологии переработки природного газа в синтетическую нефть особенно актуально для России по нескольким причинам. Во-первых, из-за наличия больших месторождений газа в Сибири. Технология позволяет перерабатывать газ непосредственно на месте и использовать имеющихся нефтепроводы для транспортировки, что экономически более выгодно. Во-вторых, GTL позволяет утилизировать попутные газы месторождений нефти, а также сдувочные газы НПЗ, обычно сжигаемые "на свече". В-третьих, полученные по этой технологии моторные топлива превосходят нефтяные аналоги по эксплуатационным и экологическим показателям.


Синтез Фишера - Тропша - это химический процесс, который является ключевой стадией самого современного способа получения синтетических топлив. Почему говорят именно «синтез» или «процесс» и избегают слова «реакция»? Именами ученых, в данном случае Франца Фишера и Ганса Тропша, называют обычно отдельные реакции. Дело в том, что как таковой реакции Фишера - Тропша нет. Это комплекс процессов. Только основных реакций в этом процессе три, а насчитывают их не менее одиннадцати. В целом синтез Фишера - Тропша - это превращение так называемого синтез-газа в смесь жидких углеводородов. Химик Владимир Мордкович о способах получения синтетического топлива, новых типах катализаторов и реакторе Фишера - Тропша.

Владимир Мордкович - доктор химических наук, кафедра физики и химии наноструктур МФТИ, заведующий отделом новых химических технологий и наноматериалов ТИСНУМ, научный директор компании «Инфра Технологии».

Комментарии: 0

    Сланцевый природный газ (англ. shale gas) - природный газ, добываемый из горючих сланцев и состоящий преимущественно из метана. Горючий сланец - твердое полезное ископаемое органического происхождения. Сланцы в основном образовались 450 миллионов лет тому назад на дне моря из растительных и животных остатков.

    Александра Пошибаева

    Сегодня есть две основные гипотезы образования нефти: неорганическая (абиогенная) и органическая (биогенная, и ее также называют осадочно-миграционной). Сторонники неорганической концепции считают, что нефть образовалась из углерода и водорода по процессу Фишера - Тропша на больших глубинах, при огромных давлениях и температурах выше тысячи градусов. Нормальные алканы могут образоваться из углерода, водорода в присутствии катализаторов, однако в природе отсутствуют такие катализаторы. Помимо этого, в нефтях содержится огромное количество изопренанов, циклических углеводородов-биомаркеров, которые по процессу Фишера - Тропша образоваться не могут. О поиске новых месторождений нефти, неорганической теории ее происхождения и роли прокариот и эукариот в образовании углеводородов рассказывает химик Александра Пошибаева.

    Андрей Бычков

    Углеводороды сегодня являются энергетической основой нашей цивилизации. Но надолго ли хватит месторождений горючих ископаемых и что делать после их истощения? Как и других полезных ископаемых, нам придется разрабатывать сырье с меньшим содержанием полезного компонента. Как сделать нефть, из какого сырья? Будет ли это выгодно? Уже сегодня мы имеем много экспериментальных данных. В лекции будут обсуждены вопросы о процессах образования нефти в природе и показаны новые экспериментальные результаты. Обо всем этом вам расскажет Бычков Андрей Юрьевич, доктор геолого-минералогических наук, профессор РАН, профессор кафедры геохимии в МГУ.

    Елена Наймарк

    Американские ученые научились получать оптические изомеры соединений на основе альдегидов, осуществив наконец важную реакцию, над которой химики работали многие годы. В эксперименте они объединили два катализатора, работающие по разным принципам. В результате совместного действия этих катализаторов образуются две активных органических молекулы, которые объединяются в требуемое вещество. На примере этой реакции показана возможность синтеза целого класса биологически важных органических соединений.

    Елена Наймарк

    Последователи Стэнли Миллера, поставившего в 50-х годах знаменитые опыты по имитации синтеза органики в первичной атмосфере Земли, вновь обратились к результатам старых экспериментов. Оставшиеся от тех лет материалы они исследовали новейшими методами. Выяснилось, что в экспериментах, имитировавших вулканические выбросы парогазовой смеси, синтезировался широкий спектр аминокислот и других органических соединений. Их разнообразие оказалось больше, чем это представлялось в 50-е годы. Этот результат акцентирует внимание современных исследователей на условиях синтеза и накопления первичной высокомолекулярной органики: синтез мог активизироваться в районах извержений, а вулканические пеплы и туфы могли стать резервуаром биологических молекул.

    Королёв Ю. М.

    О том, как учёные пытаются разгадать тайну происхождения нефти, а точнее, нефтяных углеводородов, мы попросили рассказать Ю.М. Королёва - ведущего научного сотрудника Института нефтехимического синтеза им. А.В. Топчиева. Он более тридцати лет изучает рентгенографический фазовый состав ископаемых углеводородных минералов и их превращение под действием времени и температуры.

    Родкин М. В.

    Спор о биогенном (органическом) или абиогенном происхождении нефти особенно интересен для российского читателя. Во-первых, углеводородное сырьё - один из основных источников дохода в бюджете страны, а во-вторых, российские учёные - признанные лидеры многих направлений в этом старом, но всё ещё не закрытом научном споре.

    Александр Марков

    В космосе обнаружены разнообразные органические вещества, однако о механизмах их формирования известно немного. Астрофизики и химики из Франции, Дании и Мексики экспериментально показали, что в условиях, имитирующих ранние стадии формирования планетных систем, в водяном льду с примесью метанола и аммиака под действием ультрафиолетового излучения образуются всевозможные углеводы, включая рибозу - важнейшую составную часть РНК. Авторы предполагают, что химический процесс, приводящий к синтезу этих углеводов, схож с автокаталитической реакцией Бутлерова, хотя и не нуждается в присутствии двухвалентных ионов металлов.

    Елена Наймарк

    Миру РНК предшествовало время предбиологического синтеза, когда рождались так или иначе необходимые для репликации молекулы - нуклеотиды, белки, липиды. Прежде химики рассматривали процессы их синтеза по отдельности. Теперь в лаборатории Джона Сазерленда найден путь, который приводит к синтезу сразу большого набора биологических молекул. Нет нужды гадать, что было раньше, РНК или белки, - вероятно, они синтезировались одновременно в едином каскаде химических реакций; в начале его появляется цианистый водород и сероводород с металлическими катализаторами. Эту сеть реакций авторы назвали цианосульфидным протометаболизмом. С выходом в свет нового исследования можно говорить о поворотной точке в науке о происхождении жизни.

    Дмитрий Грищенко

    О добыче сланцевой нефти и газа пишут много и часто. На лекции попробуем разобраться что же представляет из себя данная технология, какие экологические проблемы с ней связаны, а какие - лишь плод воображения журналистов и защитников природы.