Open
Close

Взаимное расположение двух плоскостей. Плоскость в пространстве – необходимые сведения

Для двух плоскостей возможны следующие варианты взаимного расположения: они параллельны или пересекаются по прямой линии.

Из стереометрии известно, что две плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. Это условие называют признаком параллельности плоскостей .

Если две плоскости являются параллельными, то они пересекают какую-то третью плоскость по параллельным прямым. Исходя из этого у параллельных плоскостей Р и Q их следы являются параллельными прямыми (рис. 50).

В случае, когда две плоскости Р и Q параллельны оси х , их горизонтальные и фронтальные следы при произвольном взаимном расположении плоскостей будут параллельными оси х, т. е. взаимно параллельными. Следовательно, при таких условиях параллельность следов является достаточным признаком, характеризующим параллельность самих плоскостей. Для параллельности подобных плоскостей нужно убедиться в параллельности и профильных их следов P w и Q w . Плоскости Р и Q на рисунке 51 параллельны, а на рисунке 52 они не параллельны, несмотря на то что P v || Q v , и P h у || Q h .

В случае, когда плоскости параллельны, горизонтали одной плоскости параллельны горизонталям другой. Фронтали одной плоскости при этом должны быть параллельными фронталям другой, так как у этих плоскостей параллельны одноименные следы.

Для того чтобы построить две плоскости, пересекающиеся между собой, необходимо найти прямую, по которой пересекаются две плоскости. Для построения этой прямой достаточно найти две точки, принадлежащие ей.

Иногда, когда плоскость задана следами, найти данные точки легко с помощью эпюра и без дополнительных построений. Здесь известно направление определяемой прямой, и ее построение основывается на использовании одной точки на эпюре.

Конец работы -

Эта тема принадлежит разделу:

Начертательная геометрия. Конспект лекций лекция. Сведения о проекциях

Лекция сведения о проекциях понятие проекций чтение чертежа.. центральная проекция.. представление о центральной проекции можно получить если изучить изображение которое дает человеческий глаз..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Понятие проекций
Начертательной геометрией называют науку, которая является теоретическим фундаментом черчения. В данной науке изучаются способы изображения на плоскости различных тел и их элементо

Параллельная проекция
Параллельная проекция – это такой вид проекции, при построении которого используются параллельные проецирующиеся лучи. При построении параллельных проекций нужно задать на

Проекции точки на две плоскости проекций
Рассмотрим проекции точек на две плоскости, для чего возьмем две перпендикулярные плоскости (рис. 4), которые будем называть горизонтальной фронтальной и плоскостями. Линию пересечения данных плоск

Отсутствие оси проекций
Для пояснения получения на модели проекций точки на перпендикулярные плоскости проекций (рис. 4) необходимо взять кусок плотной бумаги в форме удлиненного прямоугольника. Его нужно согнуть между пр

Проекции точки на три плоскости проекций
Рассмотрим профильную плоскость проекций. Проекции на две перпендикулярные плоскости обычно определяют положение фигуры и дают возможность узнать ее настоящие размеры и форму. Но бывают случаи, ког

Координаты точки
Положение точки в пространстве может быть определено с помощью трех чисел, называемых ее координатами. Каждой координате соответствует расстояние точки от какой-нибудь плоскости пр

Проекции прямой
Для определения прямой необходимы две точки. Точку определяют две проекции на горизонтальную и фронтальную плоскости, т. е. прямая определяется с помощью проекций двух своих точек на горизонтальной

Следы прямой
След прямой – это точка пересечения ее с некоторой плоскостью или поверхностью (рис. 20). Горизонтальным следом прямой называется некоторая точка H

Различные положения прямой
Прямую называют прямой общего положения, если она не параллельна и не перпендикулярна ни одной плоскости проекций. Проекции прямой общего положения тоже не параллельны и не перпенд

Взаимное расположение двух прямых
Возможны три случая расположения прямых в пространстве: 1) прямые пресекаются, т. е. имеют общую точку; 2) прямые параллельны, т. е. не имеют общей точки, но лежат в одной плоскос

Перпендикулярные прямые
Рассмотрим теорему: если одна сторона прямого угла параллельна плоскости проекций (или лежит в ней), то прямой угол проецируется на эту плоскость без искажения. Приведем доказательство для

Определение положения плоскости
Для произвольно расположенной плоскости проекции ее точек заполняют все три плоскости проекций. Поэтому не имеет смысла говорить о проекции всей плоскости целиком, нужно рассматривать лишь проекции

Следы плоскости
След плоскости Р – это линия пересечения ее с данной плоскостью или поверхностью (рис. 36). Линию пересечения плоскости Р с горизонтальной плоскостью называю

Горизонтали и фронтали плоскости
Среди прямых, которые лежат в некоторой плоскости, можно выделить два класса прямых, играющих большую роль при решении всевозможных задач. Это прямые, которые называют горизонталями

Построение следов плоскости
Рассмотрим построение следов плоскости Р, которая задана парой пересекающихся прямых I и II (рис. 45). Если прямая находится на плоскости Р, то ее следы лежат на одноименных следах

Различные положения плоскости
Плоскостью общего положения называется плоскость, не параллельная и не перпендикулярная ни одной плоскости проекций. Следы такой плоскости также не параллельны и не перпендикулярны

Прямая, параллельная плоскости
Может быть несколько положений прямой относительно некоторой плоскости. 1. Прямая лежит в некоторой плоскости. 2. Прямая параллельна некоторой плоскости. 3. Прямая пересе

Прямая, пересекающая плоскость
Для нахождения точки пересечения прямой и плоскости необходимо построить линии пересечения двух плоскостей. Рассмотрим прямую I и плоскость Р (рис. 54).

Призма и пирамида
Рассмотрим прямую призму, которая стоит на горизонтальной плоскости (рис. 56). Ее боковые гран

Цилиндр и конус
Цилиндр – это фигура, поверхность которого получается вращением прямой m вокруг оси i, расположенной в одной плоскости с этой прямой. В случае, когда прямая m

Шар, тор и кольцо
Когда некоторая ось вращения I является диаметром окружности, то получается шаровая поверхность (рис. 66).

Линии, применяемые в черчении
В черчении применяют три основных типа линий (сплошные, штриховые и штрихпунктирные) различной толщины (рис. 76).

Расположение видов (проекций)
В черчении применяются шесть видов, которые изображены на рисунке 85. На рисунке показаны проекции буквы «Л».

Отступление от приведенных правил расположения видов
В некоторых случаях допускаются отступления от правил построения проекций. Среди этих случаев можно выделить следующие: частичные виды и виды, расположенные без проекционной связи с другими видами.

Число проекций, определяющих данное тело
Положение тел в пространстве, форма и размеры определяются обычно небольшим числом соответствующим образом подобранных точек. Если при изображении проекции какого-то тела обращать внимание

Вращение точки около оси, перпендикулярной плоскости проекций
На рисунке 91 дана ось вращения I, которая перпендикулярна горизонтальной плоскости, и произвольно расположенная в пространстве точка А. При вращении около оси I эта точка опис

Определение натуральной величины отрезка путем вращения
Отрезок, параллельный какой-нибудь плоскости проекций, проецируется на нее без искажения. Если повернуть отрезок таким образом, чтобы он стал параллельным одной из плоскостей проекций, то можно опр

Построение проекций фигуры сечения можно выполнить двояко
1. Можно найти точки встречи ребер многогранника с секущей плоскостью, после чего соединить проекции найденных точек. В результате этого получатся проекции искомого многоугольника. В этом случае це

Пирамида
На рисунке 98 показано пересечение поверхности пирамиды фронтально-проектирующей плоскостью Р. На рисунке 98б изображена фронтальная проекция а точки встречи ребра KS с плоскостью

Косые сечения
Под косыми сечениями понимают круг задач на построение натуральных видов сечений рассматриваемого тела проецирующейся плоскостью. Для выполнения косого сечения необходимо расчленит

Гипербола как сечение поверхности конуса фронтальной плоскостью
Пусть требуется построить сечение поверхности конуса, стоящего на горизонтальной плоскости, плоскостью Р, которая параллельна плоскости V. На рисунке 103 показана фронтальная

Сечение поверхности цилиндра
Бывают следующие случаи сечения поверхности прямого кругового цилиндра плоскостью: 1) окружность, если секущая плоскость Р перпендикулярна оси цилиндра, причем она параллельна основ

Сечение поверхности конуса
В общем случае круговая коническая поверхность включает в себя две совершенно одинаковые полости, которые имеют общую вершину (рис. 107в). Образующие одной полости представляют собой продолжение об

Сечение поверхности шара
Любое сечение поверхности шара плоскостью является окружностью, которая проецируется без искажения только в том случае, если секущая плоскость параллельна плоскости проекций. В общем же случае мы б

Косые сечения
Пусть требуется построить натуральный вид сечения фронтально-проецирующей плоскостью тела. На рисунке 110а рассматривается тело, ограниченное тремя цилиндрическими поверхностями (1, 3 и 6), поверхн

Пирамида
Чтобы найти следы прямой на поверхности некоторого геометрического тела, нужно провести через прямую вспомогательную плоскость, затем найти сечение поверхности тела этой плоскостью. Искомыми будут

Цилиндрическая винтовая линия
Образование винтовой линии. Рассмотрим рисунок 113а на нем точка М двигается равномерно по некоторой окружности, которая представляет собой сечение круглого цилиндра плоскостью Р. Здесь эта плоскос

Два тела вращения
Метод проведения вспомогательных плоскостей применяется при построении линии пересечения поверхностей двух тел вращения. Суть этого метода заключается в следующем. Проводят вспомогательную плоскост

Сечения
Существуют некоторые определения и правила, которые относятся к сечениям. Сечение – это плоская фигура, которая была получена в результате пересечения данного тела некотор

Разрезы
Определения и правила, которые относятся к разрезам. Разрез – это такое условное изображение предмета, когда его часть, находящаяся между глазом наблюдателя и секущей плос

Частичный разрез или вырыв
Разрез называется полным, если изображаемый предмет рассекается целиком, остальные разрезы называются частичными, или вырывами. На рисунке 120 на виде слева и на плане сделаны полные разрезы. Приче

Вопрос 7.

Две плоскости в пространстве могут быть либо взаимно параллельными, и в частном случае совпадая друг с другом, либо пересекающимися. Взаимно перпендикулярные плоскости представляют собой частный случай пересекающихся плоскостей и будут рассмотрены ниже.

Параллельные плоскости. Плоскости параллельны, если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плоскости. При решении различных задач часто приходится через данную точку А проводить плоскость β , параллельную данной плоскости α .

На рис. 81 плоскость α задана двумя пересекающимися прямыми а и b. Искомая плоскость β определена прямыми а1 и b1 , соответственно параллельными a и b и проходящими через заданную точку A1.

Пересекающиеся плоскости. Линией пересечения двух плоскостей является прямая, для построения которой достаточно определить две точки, общие обеим плоскостям, либо одну точку и направление линии пересечения плоскостей.

Перед тем как рассмотреть построение линии пересечения двух плоскостей, разберем важную и вспомогательную задачу: найдем точку К пересечения прямой общего положения с проецирующей плоскостью.

Пусть например, даны прямая а и горизонтально проецирующая плоскость α (рис 82). Тогда горизонтальная проекция К1 искомой точки должна одновременно лежать на горизонтальной проекции α1 плоскости α и на горизонтальной проекции а1 прямой а, т.е. в точке пересечения а1 с α1 (рис 83) . Фронтальная проекция К2 точки К расположена на линии проекционной связи и на фронтальной проекции а2 прямой а.

А теперь разберем один из частных случаев пересекающихся плоскостей, когда одна из них – проецирующая.

На рис. 84 приведены плоскость общего положения, заданная треугольником АВС, и горизонтально проецирующая плоскость α. Найдем две общие точки для этих двух плоскостей. Очевидно, этими общими точками для плоскостей ∆АВС и α будут точки пересечения сторон АВ и ВС треугольника АВС с проецирующей плоскостью α . Построение таких точек D и E как на пространственном чертеже (рис 84) , так и на эпюре (рис 85) не вызывает затруднений после разобранного выше примера.

Соединяя одноименные проекции точек D и Е, получим проекции линии пересечения плоскости ∆ АВС и плоскости α.

Таким образом, горизонтальная проекция D1Е1 линии пересечения заданных плоскостей совпадает с горизонтальной проекцией проецирующей плоскость α – с ее горизонтальными следом α1.

Рассмотрим теперь общий случай. Пусть в пространстве заданы две плоскости общего положения α и β (рис 86). Для построения линии их пересечения необходимо, как отмечалось выше, найти две точки, общие обеим плоскостям.

Для определения этих точек заданные плоскости пересекают двумя вспомогательными плоскостями. В качестве таких плоскостей целесообразнее взять проецирующие плоскости и, в частности, плоскости уровня. На рис. 86 первая вспомогательная плоскость уровня γ каждую из данных плоскостей пересекает по горизонталям h и h1 , которые определяют точку 1, общую для плоскостей α и β. Эта точка определяется пересечением горизонталей h2 и h3, по которым вспомогательная плоскость δ пересекает каждую из данных плоскостей.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ.

Наименование параметра Значение
Тема статьи: ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ.
Рубрика (тематическая категория) Геология

Две плоскости в пространстве могут располагаться либо параллельно друг другу, либо пересекаться.

Параллельные плоскости . В проекциях с числовыми отметками признаком параллельности плоскостей на плане служит параллельность их горизонталей, равенство заложений и совпадение направлений падения плоскостей: пл. S || пл. L - h S || h L , l S = l L , пад. I. (рис.3.11).

В геологии плоское однородное тело, сложенное какой-либо породой, называют слоем. Слой ограничен двумя поверхностями, верхнюю из которых называют кровлей, а нижнюю – подошвой. В случае если слой рассматривается на сравнительно небольшой протяженности, то кровлю и подошву приравнивают к плоскостям, получая в пространстве геометрическую модель двух параллельных наклонных плоскостей.

Плоскость S - кровля, а плоскость L - подошва слоя (рис.3.12, а ). В геологии кратчайшее расстояние между кровлей и подошвой называют истинной мощностью (на рис.3.12, а истинная мощность обозначена буквой H). Помимо истинной мощности, в геологии используют и другие параметры слоя горной породы: вертикальную мощность – H в, горизонтальную мощность – L, видимую мощность – H вид. Вертикальной мощностью в геологии называют расстояние от кровли до подошвы слоя, измеренное по вертикали. Горизонтальная мощность слоя есть кратчайшее расстояние между кровлей и подошвой, измеренное в горизонтальном направлении. Видимая мощность – кратчайшее расстояние между видимым падением кровли и подошвы (видимым падением называют прямолинœейное направление на структурной плоскости, т. е. прямую, принадлежащую плоскости). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, видимая мощность всœегда больше истинной. Следует отметить, что у горизонтально залегающих слоев истинная мощность, вертикальная и видимая совпадают.

Рассмотрим прием построения параллельных плоскостей S и L, отстоящих друг от друга на заданном расстоянии (рис.3.12, б ).

На плане пересекающимися прямыми m и n задана плоскость S. Необходимо построить плоскость L, параллельную плоскости S и отстоящую от нее на расстоянии 12 м (т. е. истинная мощность – H = 12 м). Плоскость L расположена под плоскостью S (плоскость S - кровля слоя, плоскость L - подошва).

1) Плоскость S задают на плане проекциями горизонталей.

2) На масштабе заложений строят линию падения плоскости S - u S . На перпендикуляре к линии u S откладывают заданное расстояние 12 м (истинную мощность слоя H). Ниже линии падения плоскости S и параллельно ей проводят линию падения плоскости L - u L . Определяют расстояние между линиями падения обеих плоскостей в горизонтальном направлении, т. е. горизонтальную мощность слоя L.

3) Отложив на плане горизонтальную мощность от горизонтали h S , параллельно ей проводят горизонталь плоскости L с той же числовой отметкой h L . Следует обратить внимание на то, что если плоскость L расположена под плоскостью S, то горизонтальную мощность следует откладывать в направлении восстания плоскости S.

4) Исходя из условия параллельности двух плоскостей, на плане проводят горизонтали плоскости L.

Пересекающиеся плоскости . Признаком пересечения двух плоскостей обычно служит параллельность на плане проекций их горизонталей. Линию пересечения двух плоскостей в данном случае определяют точками пересечения двух пар одноименных (имеющих одинаковые числовые отметки) горизонталей (рис.3.13): ; . Соединив полученные точки N и M прямой m , определяют проекцию искомой линии пересечения. В случае если плоскость S (A, B, C) и L(mn) заданы на плане не горизонталями, то для построения их линии пересечения t крайне важно построить две пары горизонталей с одинаковыми числовыми отметками, которые в пересечении и определят проекции точек R и F искомой прямой t (рис.3.14). На рис.3.15 представлен случай, когда у двух пересекающихся

плоскостей S и L горизонтали параллельны. Линией пересечения таких плоскостей будет горизонтальная прямая h . Стоит сказать, что для нахождения точки A, принадлежащей этой прямой, проводят произвольную вспомогательную плоскость T, которая пересекает плоскости S и L. Плоскость T пересекает плоскость S по прямой а (C 1 D 2), а плоскость L - по прямой b (K 1 L 2).

Точка пересечения прямых а и b , принадлежащих соответственно плоскостям S и L, будет общей для этих плоскостей: =А. Отметку точки А можно определить, проинтерполировав прямые a и b . Остается провести через A горизонтальную прямую h 2,9 , которая и является линией пересечения плоскостей S и L.

Рассмотрим еще один пример (рис.3.16) построения линии пересечения наклонной плоскости S с вертикальной плоскостью Т. Искомая прямая m определяется точками A и B, в которых горизонтали h 3 и h 4 плоскости S пересекают вертикальную плоскостью T. Из чертежа видно, что проекция линии пересечения совпадает с проекцией вертикальной плоскости: m º T. В решении геологоразведочных задач сечение одной или группы плоскостей (поверхностей) вертикальной плоскостью принято называть разрезом. Построенную в рассматриваемом примере дополнительную вертикальную проекцию прямой m называют профилем разреза, выполненного плоскостью T по заданному направлению.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ. - понятие и виды. Классификация и особенности категории "ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ." 2017, 2018.


Не меньше 1, так хотя бы 1 элемент отличен от нуля. Пусть 1 и 2 пересекаются они имеют общую линию они имеют общую систему они не параллельны, а так они совместны, значит . Пусть 1 и 2 параллельны: , . Если декартовая система координат, то - нормальные вектора. Косинус угла между двумя векторами:

Необходимое и достаточное условие перпендикулярности двух плоскостей:

20. Различные способы задания прямой в пространстве. Прямая и плоскость. 2 прямые в пространстве. Угол между двумя прямыми. Замечание. Прямую в пространстве невозможно задать одним уравнением. Для этого требуется система двух или более уравнений. Первая возможность составить уравнения прямой в пространстве – представить эту прямую как пересечение двух непараллельных плоскостей, заданных уравнениями A 1 x+B 1 y+C 1 z+D 1 = 0 и A 2 x+B 2 y+C 2 z+D 2 =0, где коэффициенты A 1 ,B 1 ,C 1 и A 2 ,B 2 ,C 2 не пропорциональны: A 1 x+B 1 y+C 1 z+D 1 =0; A 2 x+B 2 y+C 2 z+D 2 =0.Однако при решении многих задач удобнее пользоваться другими уравнениями прямой, содержащими в явной форме некоторые ее геометрические характеристики.Составим уравнения прямой, проходящей через точку М 0 (x 0 ,y 0 ,z 0 ) параллельно вектору a ={l,m,n}.Определение. Любой ненулевой вектор, параллельный данной прямой, называется ее направляющим вектором .Для любой точки М(x,y,z ), лежащей на данной прямой, вектор М 0 М = {x - x 0 ,y - y 0 ,z - z 0 ) коллинеарен направляющему вектору а . Поэтому имеют место равенства:

называемые каноническими уравнениями прямой в пространстве. В частности, если требуется получить уравнения прямой, проходящей через две точки: М 1 (х 1 , у 1 , z 1 ) и M 2 (x 2 , y 2 , z 2 ), направляющим вектором такой прямой можно считать вектор М 1 М 2 = {x 2 – x 1 , y 2 - y 1 , z 2 - z 1 }, и уравнения (8.11) принимают вид:

- уравнения прямой, проходящей через две данные точки . Если же принять каждую из равных дробей в уравнениях за некоторый параметр t , можно получить так называемые параметрические уравнения прямой :

Для того, чтобы перейти от уравнений к каноническим или параметрическим уравнениям прямой, требуется найти направляющий вектор этой прямой и координаты любой точки, принадлежащей ей. Направляющий вектор прямой ортогонален нормалям к обеим плоскостям, следовательно, он коллинеарен их векторному произведению. Поэтому в качестве направляющего вектора можно выбрать [n 1 n 2 ] или любой вектор с пропорциональными координатами. Чтобы найти точку, лежащую на данной прямой, можно задать одну ее координату произвольно, а две остальные найти из уравнений, выбрав их так, чтобы определитель из их коэффициентов не равнялся нулю.

Угол между прямыми. Угол между прямой и плоскостью. Угол между прямыми в пространстве равен углу между их направляющими векторами. Поэтому, если две прямые заданы каноническими уравнениями вида

И косинус угла между ними можно найти по формуле:

Условия параллельности и перпендикулярности прямых тоже сводятся к соответствующим условиям для их направляющих векторов:

- условие параллельности прямых ,

- условие перпендикулярности прямых . Угол φ между прямой, заданной каноническими уравнениями

И плоскостью, определяемой общим уравнением Ax + By + Cz + D = 0, можно рассматривать как дополнительный к углу ψ между направляющим вектором прямой и нормалью к плоскости. Тогда

Условием параллельности прямой и плоскости является при этом условие перпендикулярности векторов n и а : Al + Bm + Cn = 0, а условием перпендикулярности прямой и плоскости – условие параллельности этих векторов: A/l = B/m = C/n.

21. каноническое уравнение эллипса. Свойства. называется линия, кото­рая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением x 2 /a 2 + y 2 /b 2 = 1, при условии a≥b>0. Из уравнения следует, что для всех точек эллипса │x│≤ a и │у│≤ b. Значит, эллипс лежит в прямоугольнике со сторонами 2а и 2Ь. Точки пересечения эллипса с осями канонической системы координат, имеющие координаты (а, 0), (-а, 0), (0, b) и (0, -b), называются вершинами эллипса. Числа а и b называются соответ­ственно большой и малой полу­оси. С1. Оси канонической системы координат являются осями симметрии эллипса, а начало канонической системы - его центром симметрии.Внешний вид эллипса проще всего описать сравнением с окружностью радиуса а с центром в центре эллипса: х 2 +у 2 =а 2 . При каждом х таком, что I х I < а, найдутся две точки эллипса с ординатами ±b√1-x 2 /a 2 и две точки окружности с ординатами ±a√1-x 2 / а 2 Пусть точке эллипса соответствует точка окруж­ности с ординатой того же знака. Тогда отношение ординат соответствующих точек равно b/a. Итак, эллипс получается из окружности таким сжатием ее к оси абсцисс, при котором ординаты всех точек уменьшаются в одном и том же отношении b/a. С эллипсом связаны две замечательные точки, называемые его фокусами. Пусть по определению с 2 =a 2 – b 2 и c≥0.Фокусами называются точки F 1 и F 2 с координатами (с, 0) и (-с, 0) в канонической системе координат. Отношение e=c/a называется эксцентриситетом эллипса. Отметим, что < 1. С2. Расстояние от произвольной точки М (х, у), лежащей на эллипсе, до каждого из фокусов является линейной функцией от ее абсциссы х: R 1 =│F 1 M│=a- x, r 2 =│F 2 M│=a+ x. С3. Для того чтобы точка лежала на эл­липсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялась большой оси эллипса 2а. С эллипсом связаны две замечательные прямые, называемые его директрисами. Их уравнения в канонической системе коор­динат x=a/ , x=-a/ . С4. Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы отношение ее рас­стояния до фокуса к расстоянию до соответствующей ди­ректрисы равнялось эксцентриситету эллипса . Уравнение касательной, проходящая через точку M 0 (x 0 ;y 0) имеет вид: xx 0 /a 2 + yy 0 /b 2 = 1. С5. Касательная к эллипсу в точке M 0 (x 0 ;y 0) есть биссектриса угла, смежного с углом между от­резками, соединяющими эту точку с фокусами

22. Каноническое уравнение гиперболы. Свойства. Гиперболой мы назвали линию, которая в неко­торой декартовой прямоугольной системе координат определя­ется каноническим уравнением x 2 /a 2 - y 2 /b 2 = 1. Из этого уравнения видно, что для всех точек гиперболы │x│≥a, т.е. все точки гиперболы лежат вне вертикальной полосы ширины 2а. Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами (а, 0) и (-а, 0), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа а и Ь называются соответственно вещественной и мнимой полуосями гиперболы.C1. Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы - центром симметрии.Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде у = кх, поскольку мы уже знаем, что прямая х= 0 не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения x 2 /a 2 – k 2 x 2 /b 2 = 1. Поэтому, если b 2 – a 2 k 2 >0, то x = ± ab / √b 2 – a 2 k 2 . Это позволяет указать координат точек пересечения (аb/u, аbк/u) и (-аb/и,-аbк/u),где обозначено u = (b 2 - а 2 к 2) 1/2 .

Прямые с уравнениями у = Ьх/а и у = -bх/а в канонической системе координат называются асимптотами гиперболы. C2. Произведение расстояний от точки гиперболы до асимптот постоянно и равно а 2 b 2 /(а 2 + b 2). C3. Если точка движется по гиперболе так, что ее абсцисса по абсолютной величине неограниченно возрастает, то расстояние от точки до одной из асимптот стремится к нулю. Введем число с, положив с 2 =а 2 +b 2 и с > 0. Фокусами гиперболы называются точки F 1 u F 2 c координатами (c, 0) и (-с, 0) в канонической системе координат. Отношение е = с/а, как и для эллипса, называется эксцентри­ситетом. У гиперболы е > 1. C4. Расстояния от произвольной точки М (х, у) на гиперболе до каждого из фокусов следующим образом зависят от ее абсциссы х: r 1 =│F 1 M│=│a-ex│, r 2 =│F 2 M│=│a+ex│. C5. Для того чтобы точка М лежала на гиперболе, необходимо и достаточно, чтобы разность ее рас­стояний до фокусов по абсолютной величине равнялась ве­щественной оси гиперболы 2а. Директрисами гиперболы называются прямые, задаваемые в канонической системе координат уравнениями x=a/ , x=-a/ . C6. Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы отношение ее расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету . Уравнение касательной к гиперболе в точке М 0 (х 0 ,у 0), лежа­щей на ней имеет вид: xx 0 /a 2 - yy 0 /b 2 = 1. C7. Касательная к гиперболе в точке М 0 (х 0 ,у 0) есть биссектриса угла между отрезками, соединяю­щими эту точку с фокусами.

23. Каноническое уравнение параболы. Свойства. мы назвали линию, которая в неко­торой декартовой прямоугольной системе координат опреде­ляется каноническим уравнением y 2 =2рх, при условии р > 0. Из уравнения вытекает, что для всех точек параболы x≥0. Парабола проходит через начало канонической системы координат. Эта точка называется вершиной параболы. Фокусом параболы называется точка F с координатами (р/ 2, 0) в канонической системе координат. Директрисой параболы называется прямая с уравнением х=-р/2 в канонической системе координат. C1. Расстояние от точки М (х, у), лежа­щей на параболе, до фокуса равно r=x+p/2. C2. Для того чтобы точка М лежала на параболе, необходимо и достаточно, чтобы она была одина­ково удалена от фокуса и от директрисы, этой параболы. Параболе приписывается эксцентриситет е = 1. В силу этого соглашения формула r/d=e верна и для эллипса, и для гиперболы, и для параболы. Выведем уравнение касательной к параболе в точке М 0 (х 0 ,y 0), лежащей на ней, имеет вид yy 0 = p(x+x 0). C3 Касательная к параболе в точке М о есть биссектриса угла, смежного с углом между отрезком, который соединяет М о с фокусом, и лучом, выходящим из этой точки в направлении оси параболы.

24. Алгебраические линии. Задать алгебраические линии на плоскость,значит некоторое алгебраическое ур-ие вида F(x,y)=0 и некоторая аффинная система координат окружности на плоскости, тогда те и только те M(x,y),координаты которых удовлетворяют уравнению,считают лежами на данном уравнении.Аналогично задаются уравнения для поверхности в пространстве.Задать алгебр.ур-ие вида F(x,y,z)=0(z) с 3 переменными и некоторую систему координат OXYZтолько те и те точки F(x,y,z)=0(z) являются уравнением плоскости. При этом мы считаем, что два ур-ия определяют одну и туже линию или поверхность т. и т. т.,когда одно из этих ур-ий получается из другого умножением на некоторый числовой множитель лямбда 0.

25. Понятие алгебраической поверхности. Изучениепроизвольных множеств точек-задача совершенно необъятная.Опр.Алгебраической поверхностью называется множество точек,которое в какой-нибудь декартовой системе координат может быть задано уравнением вида +…+ =0,где все показатели степени-целые неотрицательные числа.Наибольшая из сумм(разумеется,здесь имеется в виду наибольшая из сумм,фактически входящих в уравнение,т.е.предполагается,что после приведения подобных членов найдется хотя бы одно слагаемое с ненулевым коэффициентом,имеющее такую сумму показателей.) + + ,…., + + называется степенью уравнения,а также порядком алгебраической поверхности.Это определение означает,в частности,что сфера,уравнение которой в декартовой прямоугольной системе координат имеет вид ( +( +( = ,является алгебраической поверхностью второго порядка.Теорема.Алгебраическая поверхность порядка p в любой декартовой системе координат может быть задана уравнением вида +…+ =0 порядка p.

26. Цилиндрические поверхности 2-го порядка. Пусть плоскость П дана некоторая прямая 2-го порядка и связка параллельных прямых d таких, что для любого d не параллельного П, тогда множество φ всех точек пространства принадлежащих тем прямым связки, которые пересекают линию γ называется направляющими, а прямые пересекающие φ – образующие. Выведем уравнение цилиндрической поверхности, относительно аффинной системы координат. Пусть в некоторой плоскости П лежит некоторая К, уравнение которой F(x,y)=0, в имеет направление а(а 1 а 2 а 3) d параллелен а. Точка М(x,y,z) лежит на какой-то образующей, а N(x’y’o) – точка пересечения этой образующей с плоскостью П. Вектор MN будет коллинеарен с ta следовательно MN=ta , x’=x+a 1 t ; y’=y+a 2 t ; 0=z+a 3 t следовательно t= -z/a 3 , тогда x’=x- (a 1 z)/a 3 ; y’=y- (a 2 z)/a 3 F(x’y’)=0 F(x- (a 1 z)/a 3 ; y- (a 2 z)/a 3 . Теперь ясно, что уравнение F(x,y)=0 есть уравнение цилиндра с образующими параллельными оси Оy, а F(y,z)=0 с образующими параллельными оси Ох. Частный случай: Пусть прямая связки а параллельна (о,z) следовательно а 1 =0 а 2 =0 а 3 ≠0 F(x,y)=0, поэтому сколько линий второго порядка, столько и цилиндров. Поверхности: 1. Эллиптический цилиндр x 2 /a 2 +y 2 /b 2 =1 2. Гиперболический цилиндр x 2 /a 2 -y 2 /b 2 =1 3. Параболический цилиндр y 2 =2πx 4. Пара пересекающихся плоскостей x 2 /a 2 -y 2 /b 2 =0 5. Пара параллельных плоскостей x 2 /a 2 =1

27. Канонические поверхности 2-го порядка. Поверхность, на которой имеется точка М о, обладающая тем свойством, что вместе с каждой точкой М о ≠M содержит прямую (М о М), такая поверхность называется канонической или конусом. М о – вершина конуса, а прямые – ее образующие. Функция F(x,y,z)=0 называется однородной, если F(tx,ty,tz)=φ(t) F(x,y,z), где φ(t) – функция от t. Теорема. Если F(x,y,z) однородная функция, то поверхность, определяемая этим уравнением есть каноническая поверхность с вершиной в начале координат. Док-во. Пусть задана аффинная система координат и от нее задано каноническое уравнение с центром F(x,y,z)=0. Рассмотрим уравнение с вершиной в точке O M(x,y,z)=0, тогда всякая точка OM из F будет иметь вид M 1 (tx,ty,tz) на канонической поверхности. M o M(x,y,z), раз удовлетворяет поверхности, то F(tx,ty,tz)=0 функция однородная φ(t) F(x,y,z)=0 следовательно поверхность каноническая. Кривые 2-го порядка явл сечениями в конечной поверхности плоскостей x 2 +y 2 -z 2 =0/ При сечении канонических поверхностей плоскостями получаем в сечении следующие линии: а) плоскость проходящую через точку или пара слившихся прямых и пара пересекающихся прямых. Б) плоскость не проходит через вершину конуса следовательно получаем в сечении либо эллипс, либо гиперболу, либо параболу.

28. Поверхности вращения. Пусть в 3-мерном пространстве дан декартовый репер. Плоскость П проходит через Oz, в плоскости Ozy задана γ и угол xOy=φ γ имеет вид u=f(z). Возьмем точку M из γ относительно репера Oxyz. γ – описанная окружность γМ по всем точкам М из γ называется отображением. Сечением поверхности вращения плоскости, проходящей через ось вращения называется меридианом. Сечением поверхности вращения плоскости перпендикулярной оси вращения называется параллельной. Уравнение поверхности вращения x 2 +y 2 =f 2 (z) – уравнение поверхности вращения. 1) Если угол φ=0, то γ лежит в плоскости xOz, x 2 +y 2 =f 2 (z) 2) γ лежит в плоскости xOy и уравнение ее y=g(x), тогда y 2 +z 2 =g 2 (x) 3) γ лежит в плоскости yOz и уравнение ее z=h(y), тогда z 2 +x 2 =h 2 (y)

29. Эллипсоиды. Поверхность, которая получается при вращении эллипса вокруг его осей симметрии. Направив вектор е 3 сначала вдоль малой оси эллипса, а затем вдоль большой оси, мы получим ур-я эллипса в следующих видах: . В силу формулы ур-я соответствующих поверхностей вращения будут = 1 (a>c). Поверхности с такими ур-ями называются сжатым (а) и втянутым (б) эллипсоидами вращения.

Каждую точку М (x, y, z) на сжатом эллипсоиде вращения сдвинем к плоскости y=0 так, чтобы расстояние от точки до этой плоскости уменьшалось в постоянном для всех точек отношении λ<1. После сдвига точка попадет в положение M’ (x’, y’, z’) , где x’=x, y’=λy, z’=z. Таким образом, точки эллипсоида вращения переходят в точки поверхности с ур-ем , где b=λa. Поверхность, которая в некоторой декартовой системе координат имеет это ур-е, называется эллипсоидом (в). Если случайно окажется, что b=c, мы получим снова эллипсоид вращения, но уже вытянутый. Эллипсоид, так же, как и эллипсоид вращения, из которого он получен, представляет собой замкнутую ограниченную поверхность. Из уравнения видно, чо начало канонической системы координат – центр симметрии эллипсоида, а координатные плоскости – его плоскости симметрии. Эллипсоид можно получить из сферы x 2 +y 2 +z 2 =a 2 сжатиями к плоскостям у=0 и z =0 в отношениях λ=b/a и μ=с/а.

30. Гиперболоиды. Однополостный гиперболоид вращения – это поверхность вращения гиперболы вокруг той оси, которая ее не пересекает. По формуле мы получаем уравнение этой поверхности (рис. 48) . В результате сжатия однополостного гиперболоида вращения к плоскости y=0 мы получаем однополостный гиперболоид с ур-ем . Интересное св-во однополостного гиперболоида – наличие у него прямолинейных образующих. Так называются прямые линии, всеми точками лежащие на поверхности. Через каждую точку однопол гиперболоида проходят две прямолинейные образующие, ур-я которых можно получить следующим образом. Ур-е (8) можно переписать в виде . Рассмотрим прямую линию с ур-ями μ =λ , λ =μ (9), где λ и μ – некоторые числа (λ 2 +μ 2 ≠0). Координаты каждой точки прямой удовлетворяют обоим ур-ям, а следовательно и ур-ю (8), которое получается почленным перемножением. Поэтому каковы бы ни были λ и μ прямая с ур-ями (9) лежит на однополостном гиперболоиде. Таким образом, система (9) определяет семейство прямолинейных образующих. Если вместе с гиперболой мы будем вращать ее асимптоты, то они опишут прямой круговой конус, называемый асимптотическим конусом гиперболоида вращения. Пр и сжатии гиперболоида вращения его асимптотический конус сжимается в асимптотический конус общего однополостного гиперболоида.

Двуполостный гиперболоид. Двуполостный гиперболоид вращения – это поверхность, получаемая вращением гиперболы вокруг той оси, которая ее пересекает. По формуле мы получаем ур-е двуполостного гиперболоида вращения В результате сжатия этой поверхности к плоскости y=0 получается поверхность с ур-ем (12). Поверхность, которая в некоторой декартовой прямоугольной системе координат имеет ур-е вида (12), называет двуполостным гиперболоидом (рис. 49). Двум ветвям гиперболы здесь соответствуют две несвязанные между собой части («полости») поверхности. Асимптотический конус двуполостного гиперболоида определяется так же, как и для однополостного.

31. Параболоиды. Эллиптический параболоид. Вращая параболу x 2 =2pz вокруг ее оси симметрии, мы получаем поверхность с ур-ем x 2 +y 2 =2pz. Она называется параболоидом вращения. Сжатие к плоскости y=0 переводит параболоид вращения в поверхность, ур-е которой приводится к виду 2z (14). Поверхность, которая имеет такое ур-е в некоторой декартовой прямоугольной системе координат, называется эллиптическим параболоидом. Гиперболический параболоид. По аналогии с ур-ем (14) мы можем написать ур-е Поверхность, которая имеет такое ур-е в некоторой декартовой прямоугольной системе координат, называется гиперболическим параболоидом. Из канонического уравнения z= x 2 /a 2 - y 2 /b 2 гиперболического параболоида вытекает, что плоскости Охz и Оуz являются плоскостями симметрии. Ось Оz называется осью гипер­болического параболоида.. Линии z=h пересечения гиперболического параболоида с плоскостями z=h представляют собой при h > 0 гиперболы x 2 /a *2 - y 2 /b *2 =1 с полуосями a * = a√h, b * =b√h , а при h<0 – сопряженные гиперболы для гипербол x 2 /a *2 - y 2 /b *2 =1 с полуосями a * = a√-h, b * =b√-h. Используя эти формулы, легко построить «карту» гипер­болического параболоида. Как и в случае эллиптическо­го параболоида, можно убедиться в том, что гиперболический па­раболоид может быть получен путем параллельного перемещения параболы, представляющей собой сечение плоскостью Охz (Оуz), когда ее вершина движется вдоль параболы, являющейся сече­нием параболоида плоскостью Оуz (Охz).

32. Комплексные числа. Алгебраическая форма комплексного числа. Комплексным числом называется выражение вида z = х + iу, где х и у - действительные числа, i - мнимая единица. Число х называется действительной частью числа z и обозначается Rе(z), а число у - мнимой частью числа z и обозначается Im(z). Числа z = х + iу и z = х - iу называются сопряженными. Два комплексных числа z 1 = х 1 + iу 1 и z 2 = х 2 + iу 2 назы­ваются равными, если равны их действительные и мнимые части. В частности i 2 =-1. Арифметические операции на множестве комплексных чисел определяются следующим образом. 1. Сложение: z 1+ z 2 =x 1 +x 2 +i(y 1 +y 2); 2.Вычитание: z 1 -z 2 =x 1 -x 2 +i(y 1 -y 2); 3.Умножение: z 1 z 2 =(x 1 x 2 -y 1 y 2)+i(x 1 y 2 +x 2 y 1); Деление: z 1 /z 2 =((x 1 x 2 +y 1 y 2)+i(x 2 y 1 - x 1 y 2))/x 2 2 +y 2 2 . Для представления к.ч. служат точки коорди­натной плоскости Оху. Плоскость называет­ся комплексной, если каждому к.ч. z = х + iу ставит­ся в соответствие точка плоскости z(х, у), при­чем это соответствие взаимно однозначное. Оси Ох и Оу, на кото­рых расположены дей­ствительные числа z=x+0i=x и чисто мнимые числа z=0+iy=iy, называются соответсвенно действительной и мнимой осями

33. Тригонометрическая форма комплексного числа. Формула Муавра. Если вещественную x и мнимую y части комплексного числа выразить через модуль r = | z | и аргумент j(x=r cosj,y=r sinj), то всякое комплексное число z , кроме нуля, можно записать в тригонометрической форме z=r(cosj+isinj). Особенности тригонометрической формы: 1)первый множитель неотрицательное число, r³0; 2)записаны косинус и синус одного и того же аргумента; 3) мнимая единица умножена на sinj. Также может быть полезна показательная форма записи комплексных чисел, тесно связанная с тригонометрической через формулу Эйлера: z=re i j . Где e i j - расширение экспоненты для случая комплексного показателя степени. Формула, позволяющая возводить в степень комплексное число, представленное в тригонометрической форме. Формула Муавра имеет вид: z= n =r n (cosnj+isin nj), где r - модуль, а j - аргумент комплексного числа.

34. Операции над многочленами. Алгоритм Евклида. Общий вид уравнения n-ой степени: a 0 x n +a 1 x n -1 +…+a n -1 x+a n =0 (1). Определяется набор коэффициентов. (а 0 ,а 1 ,…,a n -1, a n)-произвольные комплексные числа. Рассмотрим левую часть (1): a 0 x n +a 1 x n -1 +…+a n -1 x+a n -многочлены n-ой степени. Два многочлена f(x) и g(x) будим считать равными или тождественно равными, если равны коэффициенты при одинаковых степенях. Любой многочлен определяется набором коэффициентов.

Определим операции сложения и умножения над многочленами: f(x)=a 0 +a 1 x+…+a n x n ; g(x)=b 0 +b 1 x+…+b s x s n³s; f(x)+g(x)=c 0 +c 1 x+…+c n x n -1 +c n ; c i =a i +b i если i=0,1…n; i>s b i =0; f(x)*g(x)=d 0 +d 1 x+…+d n + s x n + s ; ; d 0 =a 0 b 0 ; d 1 =a 0 b 1 +a 0 b 1 ; d 2 =a 0 b 2 +a 1 b 1 +a 2 b 0 . Степень произведения многочленов равна сумме и операции обладают свойствами: 1)a k +b k =b k +a k ; 2)(a k +b k)+c k =a k +(b k +c k); 3) . Многочлен f(x) называется обратным (x), если f(x)* (x)=1. Во множестве многочленов операция деления не возможна. В Евклидовом пространстве для многочлена существует алгоритм деления с остатком. f(x) и g(x) существуют r(x) и q(x) определены однозначно. ; ; f(x)=g(x); ; . Степень правой части £ степени g(x) , а степень левой части отсюда отсюда – мы пришли к противоречию. Доказываем первую часть теоремы: . Домножим g(x ) на такой многочлен, чтобы старшие коэффициенты умножались.

После k шагов.

; ; имеет меньшую степень q(x ). Многочлен q(x )- частное от f(x), a r(x ) –остаток от деления. Если f(x) и g(x) имеют действительные коэффициенты, то q(x) и r(x) – тоже действительные.

35.Делитель многочленов. НОД. Пусть даны два ненулевых многочлена f(x) и j(x)с комплексными коэффициентами. Если остаток равен нулю, то говорят, что f(x) делится на j(x), если j(x) является делителем f(x). Cв-ва многочлена j(x): 1)Многочлен j(x) будет делителем f(x), если существует Y(х) и f(x)= j(x)* Y(х) (1). j(x)-делитель, Y(х) -частное. Пусть Y(х) удовлетворяет (1), тогда из предыдущей теоремы Y(х) является частным, а остаток равен 0. Если(1) выполняется, то j(x)-делитель, отсюда j(x)<= степени f(x). Основные св-ва делимости многочлена: 1) ; 2 f(x) и g(x) делятся на j(х), то делятся на j(x); 3)если ; 4)если f 1 (x)..f k (x):j(x)®f 1 g 1 +…+f k g k:j(x); 5) всякий многочлен делится на любой многочлен нулевой степени f(x)=a 0 x n +a 1 x n -1 +a n c ; 6) если f(x):j(x), то f(x):cj(x); 7)Многочлен cf(x) и только они будут делителями многочлена j(х), имеющие такую же степень, что и f(x); 8)f(x):g(x) и g(x):f(x), то g(x)=cf(x); 9)Всякий делитель одного из f(x) и cf(x), с¹0 будет делителем для другого. Опр-ние: Наибольший общий делитель (НОД). Многочлен j(х) будем называть НОД f(x) и g(x), если он делит каждого из них. Многочлены нулевой степени всегда являются НОД и являются взаимопростыми. НОД отличных от нуля многочленов f(x) и g(x) называется d(x), который явл. общим делителем и делится на любой другой делитель и общий этих многочленов. НОД f(x) и g(x)= (f(x):g(x)). Алгоритм нахождения НОД: Пусть степень g(x)<= степениf(x) f(x)=g(x)g 1 (x)+r 1 (x) g(x)=r 1 (x)q 2 (x)+r 2 (x)

r k-2 (x)=r k-1 (x)q k (x)+r k (x)

r k-1 (x)=r 2 (x)+q k (x) r k (x)-НОД. Докажем. r k (x) делитель r k -1 (x)®он делитель r k -2 (x)…®он делитель g(x)®делитель f(x). g(x)g 1 (x) делится на r k (x)® f(x)- g(x) g 1 (x) делится на r k (x)® r 1 (x) делится на r k (x)® r 2 (x) делится на r k (x)®… q k (x): r k (x) делится на r k (x).

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.