Open
Close

Подвижные формы тяжелых металлов в почве.

1

Охрана окружающей среды от загрязнения стала насущной задачей общества. Среди многочисленных загрязнителей особое место занимают тяжелые металлы. К ним условно относят химические элементы с атомной массой свыше 50, обладающие свойствами металлов. Считается, что среди химических элементов тяжелые металлы являются наиболее токсичными.

Почва является основной средой, в которую попадают тяжёлые металлы, в том числе из атмосферы и водной среды. Она же служит источником вторичного загрязнения приземного воздуха и вод, попадающих из неё в Мировой океан.

Тяжелые металлы опасны тем, что они обладают способностью накапливаться в живых организмах, включаться в метаболический цикл, образовывать высокотоксичные металлорганические соединения, изменять формы нахождения при переходе от одной природной среды в другую, не подвергаясь биологическому разложению. Тяжелые металлы вызывают у человека серьезные физиологические нарушения, токсикоз, аллергию, онкологические заболевания, отрицательно влияют на зародыш и генетическую наследственность.

Среди тяжелых металлов приоритетными загрязнителями считаются свинец, кадмий, цинк, главным образом потому, что техногенное их накопление в окружающей среде идет высокими темпами. Эта группа веществ обладает большим сродством к физиологически важным органическим соединениям.

Загрязнение почвы подвижными формами тяжелых металлов является наиболее актуальной, так как в последние годы проблема загрязнения окружающей среды приняла угрожающий характер. В сложившейся ситуации необходимо не только усилить исследования по всем аспектам проблемы тяжелых металлов в биосфере, но и периодически подводить итоги для осмысливания результатов, полученных в разных, часто слабо связанных между собой отраслях науки.

Объектом данного исследования являются антропогенные почвы Железнодорожного района г.Ульяновска (на примере ул.Транспортной).

Главная цель проводимого исследования - определение степени загрязнения городских почв тяжелыми металлами.

Задачами исследования являются: определение величины рН в отобранных образцах почвы; определение концентрации подвижных форм меди, цинка, кадмия, свинца; проведения анализа полученных данных и предложение рекомендаций по снижению содержания тяжёлых металлов в городских почвах.

Пробы в 2005 году отбирались вдоль автодороги по ул.Транспортная, а в 2006 году на территории личных приусадебных участков (по той же улице), расположенных вблизи железнодорожных путей. Пробы отбирались на глубину 0-5 см и 5-10 см. Всего было отобрано 20 проб, массой по 500 г.

Исследуемые образцы проб 2005 и 2006 года относятся к нейтральной почве. Нейтральные почвы поглощают тяжелые металлы из растворов в большей степени, чем кислые. Но есть опасность увеличения подвижности тяжёлых металлов и их проникновение в грунтовые воды и близлежащий водоём, при выпадении кислотных дождей (обследуемый участок находиться в пойме р.Свияги), что незамедлительно скажется на пищевых цепях. В данных пробах наблюдается низкое содержание гумуса (2-4%). Соответственно нет способности почвы к образованию органо - металлических комплексов.

По лабораторным исследованиям почв на содержание Cu, Cd, Zn, Pb были сделаны выводы об их концентрациях в почвах обследуемой территории. В пробах 2005 года было выявлено превышение ПДК Cu в 1-1,2 раза,Cd в 6-9 раз, а содержание Zn и Pb ПДК не превысило. В пробах 2006 года отобранных на приусадебных участках концентрация Cu не превысила ПДК, содержание Cd меньше, чем в пробах отобранных вдоль дороги, но всё же превышает ПДК в разных точках от 0,3 до 4,6 раз. Содержание Zn увеличено только в 5 точке и составляет на глубине 0-5 см 23,3 мг/кг почвы (ПДК 23 мг/кг), а на глубине 5-10 см 24,8 мг/кг.

По результатам исследования сделаны следующие выводы: для почв характерна нейтральная реакция почвенного раствора; в пробах почвы низкое содержание гумуса; на территории Железнодорожного района г.Ульяновска наблюдается различное по интенсивности загрязнение тяжелыми металлами почвы; установлено, что в некоторых пробах значительное превышение ПДК, особенно это наблюдается в исследованиях почвы на концентрацию кадмия; для улучшения эколого-географического состояния почвы на данном участке рекомендуется выращивать растения-аккумуляторы тяжелых металлов и управлять экологическими свойствами самой почвы посредством ее искусственного конструирования; необходимо проводить систематический мониторинг и выявлять наиболее загрязненные и опасные для здоровья населения участки.

Библиографическая ссылка

Антонова Ю.А., Сафонова М.А. ТЯЖЁЛЫЕ МЕТАЛЛЫ В ГОРОДСКИХ ПОЧВАХ // Фундаментальные исследования. – 2007. – № 11. – С. 43-44;
URL: http://fundamental-research.ru/ru/article/view?id=3676 (дата обращения: 31.03.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

В настоящий момент для обозначения практически одинаковой группы химических элементов широко применяются два различных термина: микроэлементы и тяжелые металлы.

Микроэлементы - понятие, зародившееся в геохимии и ныне активно используемое в сельскохозяйственных науках, медицине, токсикологии, санитарии. Оно обозначает группу химических элементов, которые содержатся в природных объектах в очень малых количествах - менее 0,01%, как правило, 10 -3 -10 -12 %. Формально в основу выделения положена их распространенность в природе, которая для разных природных сред и объектов (литосфера, педосфера, донные осадки, гидросфера, растения, животные и др.) существенно различается.

Термин ""тяжелые металлы"" в большей степени отражают эффект загрязнения окружающей среды и токсичное воздействие элементов при их поступлении в биоту. Он заимствован из технической литературы, где применяется для обозначения химических элементов с плотностью более 5 г/см 3 . Если исходить из этого показателя, тяжелыми следует считать 43 из 84 металлов, входящих в Периодическую систему элементов Менделеева. Однако при такой трактовке под данное определение не попадают Be - 1,85 г/см 3 , Al - 2,7, Sc - 3,0, Ti - 4,6, Rb - 1,5, Sr - 2,6, Y - 4,5, Cs - 1,9, Ba - 3,8 г/см 3 , которые при избыточных концентрациях также бывают опасными. Необходимость включения в эту группу легких металлов-токсикантов была достигнута изменением критерия отбора, когда в данную группу стали относить элементы с атомной массой более 40. При таком подходе из токсикантов в нее не попали лишь Be и Al.

Поэтому вполне обоснованным является включение в современную трактовку термина “тяжелые металлы” большой группы токсичных химических элементов, в том числе и неметаллов.

Всего насчитывается свыше 40 тяжелых металлов. Приоритетными загрязнителями считаются Pb, Cd, Zn, Hg, As и Cu, так как их техногенное накопление в окружающей среде идет очень высокими темпами. Эти элементы обладают большим сродством к физиологически важным органическим соединениям. Их избыточные количества в организме живых существ нарушает все процессы метаболизма и приводят к серьезным заболевания человека и животных. В то же время, многие их элементов (Co, Cu, Zn, Se, Mn) довольно широко используются в народнохозяйственном производстве (особенно в сельском хозяйстве, медицине и др.) под названием микроэлементы, о чем говорилось выше.

Хром (Cr ). Содержание элемента в почвах зависит от его содержания в материнских породах.

Хром отличается широким разнообразием состояний окисления и способностью формировать комплексные анионные и катионные ионы (Cr (OH ) 2+ , CrO 4 2- , CrO 3 -). В природных соединениях он обладает валентностью +3 (хромовые соединения) и +6 (хроматы). Большая часть Cr 3+ присутствует в хромате FeCr 2 O 4 или других минералах шпинелевого ряда в которых он замещает железо и алюминий.

В почвах большая часть хрома присутствует в виде Cr 3+ входит в состав минералов или образует различные Cr 3+ и Fe 3+ оксиды. Соединения хрома в почвах весьма стабильны, так как в кислой среде он инертен (при рН 5,5 он почти полностью выпадает в осадок). Поведение хрома зависит от рН и окислительно-восстановительного потенциала почв.

На поведение хрома в почвах большое влияние оказывают и органические комплексы. Важным моментом в поведении элемента, с которым связана доступность хрома для растений, является легкость, с которой растворимый Cr 6+ при нормальных почвенных условиях переходит в нерастворимый Cr 3+ . В результате окисляющей способности соединений марганца в почвах может наблюдаться окисление Cr 3+ .

Хром является важным элементом питания растений. Снижение его подвижности хрома в почвах может приводить к дефициту в растениях. Легко растворимый в почвах Cr 6+ токсичен для растений и животных.

Известкование применение фосфора и органических веществ заметно снижает токсичность хрома в загрязненных почвах.

Свинец (Pb). Содержание свинца в земной коре составляет 1,6×10 -3 весовых процента. Естественное содержание свинца в почвах колеблется от 3 до 189 мг/кг. В естественных условиях его главная форма - галенит PbS . Свинец присутствует в виде Pb 2+ . При выветривании сульфиды свинца медленно окисляются.

По геохимическим свойствам свинец близок к группе двухвалентных щелочноземельных элементов, поэтому способен замещать К, Ва, Sr , Са как в минералах, так и при процессе сорбции. Из-за широкомасштабного загрязнения свинцом большинство почв, особенно верхние горизонты, обогащены этим элементом.

Среди тяжелых металлов он наименее подвижен. Свинец ассоциируется главным образом с глинистыми минералами, оксидами марганца, гидроксидами железа и алюминия, органическим веществом. При высоких рН свинец осаждается в почве в виде гидроксида, фосфата, карбоната. Эти же условия способствуют образованию Pb -органических комплексов.

Уровни содержаний, при котором элемент становится токсичным, колеблются в пределах 100-500 мг/кг. Свинцовые загрязнения от предприятий цветной металлургии представлены минеральными формами, от выхлопных газов автотранспорта - галогенидных солей. Содержащие Pb частицы выхлопных газов неустойчивы и легко превращаются в оксиды, карбонаты, сульфаты. Загрязнение почв свинцом носит необратимый характер, поэтому накопление микроэлемента в верхнем горизонте почв будет идти даже в условиях его небольшого привноса.

Загрязнение почв свинцом в настоящее время не вызывает большого беспокойства из-за нерастворимости адсорбированных и осажденных ионов Pb в почвах. Однако содержание свинца в корнях растений коррелирует с его содержанием в почвах, что указывает на поглощение элемента растениями. Накопление свинца в верхнем горизонте почв имеет также большое экологическое значение, так как он сильно воздействует на биологическую активность почв и почвенную биоту. Его высокие концентрации могут тормозить микробиологические процессы особенно в почвах с низким значением катионообменной емкости.

Кадмий (Cd). Кадмий является рассеянным элементом. Распространенность кадмия в земной коре составляет 5×10 -5 весовых процента. Геохимия Cd тесно связана с геохимией цинка, он обнаруживает большую подвижность в кислых средах.

При выветривании кадмий легко переходит в раствор где присутствует в виде Cd 2+ . Он может образовывать комплексные ионы CdCl + , CdOH + , CdHCO 3 + , Cd (OH ) 3 - , Cd (OH ) 4 2- , а также органические хелаты. Главное валентное состояние кадмия в природных средах +2. Наиболее важными факторами, контролирующие подвижность ионов кадмия, являются рН среды и окислительно-восстановительный потенциал. В сильноокислительных условиях Cd способен образовывать собственно минералы, а также накапливаться в фосфатах и биогенных осадках.

Главный фактор, определяющий содержание элемента в почвах - состав материнских пород. Среднее содержание кадмия в почвах - от 0,07 до 1,1 мг/кг. При этом фоновые уровни не превосходят 0,5 мг/кг, более высокие значения являются результатом антропогенной деятельности.

В связывании кадмия различными компонентами почвы ведущим процессом является конкурирующая адсорбция на глинах. В любой почве активность кадмия сильно зависит от рН. Элемент наиболее подвижен в кислых почвах в интервале рН 4,5-5,5, в щелочных он относительно неподвижен. При росте рН до щелочных значений появляется одновалентный гидроксокомплекс Cd ОН + , который не может легко заменить позиции в ионообменном комплексе.

Для кадмия наиболее характерна миграция вниз по профилю, чем накопление в верхних горизонтах почв, поэтому обогащение элементом верхних слоев свидетельствует о загрязнении почв. Загрязнение почв Cd опасно для биоты. В условиях техногенной нагрузки максимальные уровни кадмия в почвах характерны для районов свинцово-цинковых рудников, вблизи предприятий цветной металлургии, на сельскохозяйственных угодьях, где используются сточные воды и фосфатные удобрения.

Для уменьшения токсичности Cd в почвах используются методы, направленные на повышение рН и катионообменной емкости почв.

Ртуть (Hg). Ртуть и ее сульфид (киноварь) известны человеку с давних времен. Это единственный металл, который при обычной температуре находится в жидком виде. Алхимики считали ртуть носительницей металлических свойств и рассматривали ее как общую составную часть всех металлов.

Важными геохимическими свойствами ртути являются: образование сильных связей с серой, образование органо-металлических соединений, сравнительно устойчивых в водной среде, летучесть элементарной ртути. Ртуть малоподвижна при выветривании, задерживается почвой главным образом в форме слабоподвижных органических комплексов.

Сорбция Hg 2+ в почве изменяется в зависимости от величины рН, будучи максимальной при рН 4-5. Средние концентрации ртути в поверхностном слое почвы не превышают 400 мкг/кг. Фоновые уровни элемента можно оценить как 0,n мг/кг, однако точные количества определить трудно из-за широкого загрязнения почв этим металлом. Загрязнение почв ртутью связано с предприятиями, производящими тяжелые металлы, с химическим производством, с применением фунгицидов.

Загрязнение почв ртутью само по себе не является серьезной проблемой, тем не менее даже простые соли Hg или металлическая ртуть создают опасность для растений и почвенной биоты из-за отравляющих свойств паров ртути. Потребление элемента корнями растений может быть сведено до минимума путем внесения извести, серусодержащих соединений и твердых фосфатов.

Мышьяк (As). Мышьяк известен с древности. Еще Аристотель и Теофраст упоминают о естественных сернистых соединениях мышьяка, применявшихся в качестве лечебных средств и красок. Среднее содержание элемента в земной коре - 5×10 -4 весовых процента. Характеризуется однородным распределением в главных типах горных пород. Образует собственные минералы и входит в состав других. Элемент связан с месторождениями других минералах и выступает как индикатор при поисковых геохимических работах. Минералы мышьяка хорошо растворимы. Однако интенсивность его миграции невелика вследствии активной сорбции глинистыми частицами, гидроксидами, органическим веществом.

Обычные состояния окисления As; -3, 0, +3, +5. Комплексные анионы AsО 2 - , AsО 4 3- , НAsО 4 2- , As 2 О 3 - являются наиболее распространенными подвижными формами мышьяка. По особенностям поведения AsО 4 3- близок к фосфатам. Наиболее распространенная форма мышьяка в условиях окружающей среды - As 5+ .

Мышьяк, адсорбированный почвой, с трудом поддается десорбции, а прочность связывания элемента почвой с годами увеличивается. Наиболее низкие уровни содержания мышьяка характерны для песчаных почв. Его максимальные концентрации связаны с аллювиальными почвами и почвами, обогащенными органическим веществом.

Токсичность мышьяка в почвах может быть снижена разными способами в зависимости от источника загрязнения и свойств почв. Увеличение окислительного состояния почв, применение веществ, способствующих осаждению и связыванию элемента (сульфата железа, карбоната кальция), ограничивает биодоступность мышьяка. Внесение фосфатных удобрений также снижает поступление элемента в биоту.

Никель (Ni ). Содержание никеля в земной коре составляет 8×10 -3 весовых процента. В распространении никеля в земной коре наблюдается сходство с кобальтом и железом. В континентальных отложениях он присутствует в виде сульфидов и арсенидов и часто замещает железо в железомагнезиальных соединениях. В соединениях никель главным образом двух- и трехвалентен.

При выветривании горных пород элемент легко высвобождается, а затем осаждается с оксидами железа и марганца. Он относительно стабилен в водных растворах и может мигрировать на большие расстояния.

В почвах никель тесно связан с оксидами марганца и железа, и в этой форме наиболее доступен для растений. В верхних горизонтах почв никель присутствует в органически связанных формах, часть из которых представлена легко растворимыми хелатами. Самые высокие содержания Ni наблюдаются в глинистых и суглинистых почвах, в почвах на основных и вулканических породах и в почвах, богатых органикой.

В настоящее время никель считается серьезным загрязнителем. Антропогенные источники никеля приводят к его существенному увеличению в почвах. В осадках сточных вод Ni присутствует в форме легкодоступных органических хелатов и может быть фитотоксичным. Снижению его доступности для растений способствуют внесение фосфатов или органического вещества.

Расчеты, проведенные в Беларуси, свидетельствуют о том, что в атмосферу республики только от стационарных источников сжигания топлива попадает 72% мышьяка, 57% ртути, около 99% никеля, 27% кадмия, 33% хрома, 27% меди, 15% свинца, 11% цинка. Цементное производство привносит значительные количества кадмия, свинца, хрома. Передвижные источники в основном загрязняют атмосферу цинком и медью.

Кроме атмосферных выпадений, значительное количество металлов привносится в почву при использовании удобрений, в том числе на основе осадков сточных вод и бытовых отходов. В составе примесей в удобрениях находится кадмий, хром, медь свинец, уран, ванадий и цинк, с отходами интенсивного животноводства и птицеводства - медь и мышьяк, с компостом и навозом - кадмий, медь, никель, цинк и мышьяк, с пестицидами - кадмий, мышьяк, ртуть, свинец, марганец и цинк.

Сложность состава почв, большой набор химических соединений обусловливают возможность одновременного протекания различных химических реакций и способность твердых фаз почв поддерживать сравнительно постоянным состав почвенного раствора, откуда растения непосредственно черпают химические элементы. Эту способность поддерживать постоянным состав почвенного раствора называют буферностью почв. В природной обстановке буферность почв выражается в том, что при потреблении какого-либо элемента из почвенного раствора происходит частичное растворение твердых фаз и концентрация раствора восстанавливается. Если в почвенный раствор извне попадают излишние количества каких-либо соединений, то твердые фазы почв связывают такие вещества, вновь поддерживая постоянство состава почвенного раствора. Итак, действует общее правило: буферность почв обусловлена большим набором одновременно протекающих химических реакций между почвенным раствором и твердыми частями почвы. Химическое разнообразие делает почву устойчивой в изменяющихся условиях природной среды или при антропогенной деятельности.

тяжелый металл растение почва

Содержание ТМ в почвах зависит, как установлено многими исследователями, от состава исходных горных пород, значительное разнообразие которых связано со сложной геологической историей развития территорий (Ковда, 1973). Химический состав почвообразующих пород, представленный продуктами выветривания горных пород, предопределен химическим составом исходных горных пород и зависит от условий гипергенного преобразования.

В последние десятилетия в процессы миграции ТМ в природной среде интенсивно включилась антропогенная деятельность человечества. Количества химических элементов, поступающие в окружающую среду в результате техногенеза, в ряде случаев значительно превосходят уровень их естественного поступления. Например, глобальное выделение Pb из природных источников в год составляет 12 тыс.т. и антропогенная эмиссия 332 тыс.т. (Nriagu, 1989). Включаясь в природные циклы миграции, антропогенные потоки приводят к быстрому распространению загрязняющих веществ в природных компонентах городского ландшафта, где неизбежно их взаимодействие с человеком. Объемы поллютантов, содержащих ТМ, ежегодно возрастают и наносят ущерб природной среде, подрывают существующее экологическое равновесие и негативно сказываются на здоровье людей.

Основными источниками антропогенного поступления ТМ в окружающую среду являются тепловые электростанции, металлургические предприятия, карьеры и шахты по добыче полиметаллических руд, транспорт, химические средства защиты сельскохозяйственных культур от болезней и вредителей, сжигание нефти и раз­личных отходов, производство стекла, удобрений, цемента и пр. Наиболее мощные ореолы ТМ возникают вокруг предприятий черной и особенно цветной металлургии в результате атмосферных выбросов (Ковальский, 1974; Добровольский, 1983; Израэль, 1984; Геохимия…, 1986; Сает, 1987; Панин, 2000; Kabala, Singh, 2001). Действие загрязняющих веществ распространяется на десятки километров от источника поступления элементов в атмосферу. Так, металлы в количестве от 10 до 30 % от общего выброса в атмосферу распространяются на расстояние 10 км и более от промышленного предприятия. При этом наблюдается комбинированное загрязнение растений, слагающееся из непосредственного оседания аэрозолей и пыли на поверхность листьев и корневого усвоения ТМ, накопившихся в почве в течение продолжительного времени поступления загрязнений из атмосферы (Ильин, Сысо, 2001).

По приведенным ниже данным можно судить о размерах антропогенной деятельности человечества: вклад техногенного свинца составляет 94-97% (остальное - природные источники), кадмия - 84-89%, меди - 56-87%, никеля - 66-75%, ртути - 58% и т.д. При этом 26-44% мирового антропогенного потока этих элементов приходится на Европу, а на долю европейской территории бывшего СССР - 28-42% от всех выбросов в Европе (Вронский, 1996). Уровень техногенного выпадения ТМ из атмосферы в разных регионах мира неодинаков и зависит от наличия разрабатываемых месторождений, степени развитости горно-обогатительной и промышленной индустрии, транспорта, урбанизированности территорий и др.

Изучение долевого участия различных производств в глобальный поток эмиссии ТМ показывает: 73% меди и 55% кадмия связаны с выбросами предприятий по производству меди и никеля; 54% эмиссии ртути приходится на сжигание угля; 46% никеля -- на сжигание нефтепродуктов; 86% свинца поступает в атмосферу от автотранспорта (Вронский, 1996). Некоторое количество ТМ в окружающую среду поставляет и сельское хозяйство, где применяются пестициды и минеральные удобрения, в частности в суперфосфатах содержатся значительные количества хрома, кадмия, кобальта, меди, никеля, ванадия, цинка и др.

Заметное действие на окружающую среду оказывают элементы, выбрасываемые в атмосферу через трубы предприятий химической, тяжелой и атомной промышленности. Долевое участие в атмосферном загрязнении тепловых и иных электростанций составляет 27 %, предприятий черной металлургии - 24,3 %, предприятий по добыче и изготовлению строительных материалов - 8,1 % (Алексеев, 1987; Ильин, 1991). ТМ (за исключением ртути) в основном заносятся в атмосферу в составе аэрозолей. Набор металлов и их содержание в аэрозолях определяются специализацией промышленных и энергетических мероприятий. При сжигании угля, нефти, сланцев вместе с дымом в атмосферу поступают элементы, содержащиеся в этих видах топлива. Так, каменный уголь содержит церий, хром, свинец, ртуть, серебро, олово, титан, а также уран, радий и другие металлы.

Наиболее существенное загрязнение среды вызывают мощные тепловые станции (Майстренко и др., 1996). Ежегодно только при сжигании угля в атмосферу выбрасывается ртути в 8700 раз больше, чем может быть включено в естественный биогеохимический цикл, урана - в 60, кадмия - в 40, иттрия и циркония - в 10, олова - в 3-4 раза. 90 % кадмия, ртути, олова, титана и цинка, загрязняющих атмосферу, попадает в нее при сжигании каменного угля. Это в значительной степени затрагивает и Республику Бурятия, где предприятия энергетики, использующие каменный уголь являются крупнейшими загрязнителями атмосферы. Среди них (по вкладу в общие выбросы) выделяются Гусиноозерская ГРЭС (30%) и ТЭЦ-1 г. Улан-Удэ (10%).

Заметное загрязнение атмосферного воздуха и почвы происходит за счет транспорта. Большинство ТМ, содержащихся в пылегазовых выбросах промышленных предприятий, как правило, более растворимы, чем природные соединения (Большаков и др., 1993). Среди наиболее активных источников поступления ТМ выделяются крупные индустриально развитые города. Металлы сравнительно быстро накапливаются в почвах городов и крайне медленно из них выводятся: период полуудаления цинка -- до 500 лет, кадмия -- до 1100 лет, меди -- до 1500 лет, свинца -- до нескольких тысяч лет (Майстренко и др., 1996). Во многих городах мира высокие темпы загрязнения ТМ привели к нарушению основных агроэкологических функций почв (Орлов и др., 1991; Касимов и др., 1995). Выращивание сельскохозяйственных растений, используемых в пищу вблизи этих территорий потенциально опасно, поскольку культурами накапливаются избыточные количества ТМ, способные приводить к различным заболеваниям человека и животных.

По мнению ряда авторов (Ильин, Степанова, 1979; Зырин, 1985; Горбатов, Зырин, 1987 и др.), степень загрязнения почв ТМ правильнее оценивать по содержанию их наиболее биодоступных мобильных форм. Однако предельно допустимые концентрации (ПДК) подвижных форм большинства ТМ в настоящее время не разработаны. Поэтому критерием для сравнения могут служить литературные данные по уровню их содержания, приводящего к неблагоприятным экологическим последствиям.

Ниже приводим краткое описание свойств металлов, касающихся особенностей их поведения в почвах.

Свинец (Pb). Атомная масса 207,2. Приоритетный элемент-токсикант. Все растворимые соединения свинца ядовиты. В естественных условиях он существует в основном в форме PbS. Кларк Pb в земной коре 16,0 мг/кг (Виноградов, 1957). По сравнению с другими ТМ он наименее подвижен, причем степень подвижности элемента сильно снижается при известковании почв. Подвижный Pb присутствует в виде комплексов с органическим веществом (60 - 80 % подвижного Pb). При высоких значениях рН свинец закрепляется в почве химически в виде гидроксида, фосфата, карбоната и Pb-органических комплексов (Цинк и кадмий…, 1992; Тяжелые …, 1997).

Естественное содержание свинца в почвах наследуется от материнских пород и тесно связано с их минералогическим и химическим составом (Беус и др., 1976; Кабата-Пендиас, Пендиас, 1989). Средняя концентрация этого элемента в почвах мира достигает по разным оценка от 10 (Сает и др., 1990) до 35 мг/кг (Bowen, 1979). ПДК свинца для почв в России соответствует 30 мг/кг (Инструктивное…,1990), в Германии - 100 мг/кг (Kloke, 1980).

Высокая концентрация свинца в почвах может быть связана как с природными геохимическими аномалиями, так и с антропогенным воздействием. При техногенном загрязнении наибольшая концентрация элемента, как правило, обнаруживается в верхнем слое почвы. В некоторых промышленных районах она достигает 1000 мг/кг (Добровольский, 1983), а в поверхностном слое почв вокруг предприятий цветной металлургии в Западной Европе - 545 мг/кг (Рэуце, Кырстя, 1986).

Содержание свинца в почвах на территории России существенно варьирует в зависимости от типа почвы, близости промышленных предприятий и естественных геохимических аномалий. В почвах селитебных зон, особенно связанных с использованием и производством свинецсодержащих продуктов, содержание данного элемента часто в десятки и более раз превышает ПДК (табл. 1.4). По предварительным оценкам до 28% территории страны имеет содержание Рb в почве, в среднем, ниже фоновой, а 11% - могут быть отнесены к зоне риска. В то же время, в Российской Федерации проблема загрязнения почв свинцом - преимущественно проблема селитебных территорий (Снакин и др., 1998).

Кадмий (Cd). Атомная масса 112,4. Кадмий по химическим свойствам близок к цинку, но отличается от него большей подвижностью в кислых средах и лучшей доступностью для растений. В почвенном растворе металл присутствует в виде Cd2+ и образовывает комплексные ионы и органические хелаты. Главный фактор, определяющий содержание элемента в почвах при отсутствии антропогенного влияния, - материнские породы (Виноградов, 1962; Минеев и др., 1981; Добровольский, 1983; Ильин, 1991; Цинк и кадмий…, 1992; Кадмий: экологические …, 1994). Кларк кадмия в литосфере 0,13 мг/кг (Кабата-Пендиас, Пендиас, 1989). В почвообразующих породах содержание металла в среднем составляет: в глинах и глинистых сланцах - 0,15 мг/кг, лессах и лессовидных суглинках - 0,08, песках и супесях - 0,03 мг/кг (Цинк и кадмий…, 1992). В четвертичных отложениях Западной Сибири концентрация кадмия изменяется в пределах 0,01-0,08 мг/кг.

Подвижность кадмия в почве зависит от среды и окислительно-восстановительного потенциала (Тяжелые …, 1997).

Среднее содержание кадмия в почвах мира равно 0,5 мг/кг (Сает и др., 1990). Концентрация его в почвенном покрове европейской части России составляет 0,14 мг/кг - в дерново-подзолистой почве, 0,24 мг/кг - в черноземе (Цинк и кадмий…, 1992), 0,07 мг/кг - в основных типах почв Западной Сибири (Ильин, 1991). Ориентировочно-допустимое содержание (ОДК) кадмия для песчаных и супесчаных почв в России составляет 0,5 мг/кг, в Германии ПДК кадмия - 3 мг/кг (Kloke, 1980).

Загрязнение почвенного покрова кадмием считается одним из наиболее опасных экологических явлений, так как он накапливается в растениях выше нормы даже при слабом загрязнении почвы (Кадмий …, 1994; Овчаренко, 1998). Наибольшие концентрации кадмия в верхнем слое почв отмечаются в горнорудных районах - до 469 мг/кг (Кабата-Пендиас, Пендиас, 1989), вокруг цинкоплавилен они достигают 1700 мг/кг (Рэуце, Кырстя, 1986).

Цинк (Zn). Атомная масса 65,4. Его кларк в земной коре 83 мг/кг. Цинк концентрируется в глинистых отложениях и сланцах в количествах от 80 до 120 мг/кг (Кабата-Пендиас, Пендиас, 1989), в делювиальных, лессовидных и карбонатных суглинистых отложениях Урала, в суглинках Западной Сибири - от 60 до 80 мг/кг.

Важными факторами, влияющими на подвижность Zn в почвах, являются содержание глинистых минералов и величина рН. При повышении рН элемент переходит в органические комплексы и связывается почвой. Ионы цинка также теряют подвижность, попадая в межпакетные пространства кристаллической решетки монтмориллонита. С органическим веществом Zn образует устойчивые формы, поэтому в большинстве случаев он накапливается в горизонтах почв с высоким содержанием гумуса и в торфе.

Причинами повышенного содержания цинка в почвах могут быть как естественные геохимические аномалии, так и техногенное загрязнение. Основными антропогенными источниками его поступления в первую очередь являются предприятия цветной металлургии. Загрязнение почв этим металлом привело в некоторых областях к крайне высокой его аккумуляции в верхнем слое почв - до 66400 мг/кг. В огородных почвах накапливается до 250 и более мг/кг цинка (Кабата-Пендиас, Пендиас, 1989). ОДК цинка для песчаных и супесчаных почв равна 55 мг/кг, германскими учеными рекомендуется ПДК, равная 100 мг/кг (Kloke, 1980).

Медь (Cu). Атомная масса 63,5. Кларк в земной коре 47 мг/кг (Виноградов, 1962). В химическом отношении медь - малоактивный металл. Основополагающим фактором, влияющим на величину содержания Cu, является концентрация ее в почвообразующих породах (Горюнова и др., 2001). Из изверженных пород наибольшее количество элемента накапливают основные породы - базальты (100-140 мг/кг) и андезиты (20-30 мг/кг). Покровные и лессовидные суглинки (20-40 мг/кг) менее богаты медью. Наименьшее же ее содержание отмечается в песчаниках, известняках и гранитах (5-15 мг/кг) (Ковальский, Андриянова, 1970; Кабата-Пендиас, Пендиас, 1989). Концентрация метала в глинах европейской части территории бывшего СССР достигает 25 мг/кг (Мальгин, 1978; Ковда, 1989), в лессовидных суглинках - 18 мг/кг (Ковда, 1989). Супесчаные и песчаные почвообразующие породы Горного Алтая накапливают в среднем 31 мг/кг меди (Мальгин, 1978), юга Западной Сибири - 19 мг/кг (Ильин, 1973).

В почвах медь является слабомиграционным элементом, хотя содержание подвижной формы бывает достаточно высоким. Количество подвижной меди зависит от многих факторов: химического и минералогического состава материнской породы, рН почвенного раствора, содержания органического вещества и др. (Виноградов, 1957; Пейве, 1961; Ковальский, Андриянова, 1970; Алексеев, 1987 и др.). Наибольшее количество меди в почве связано с оксидами железа, марганца, гидроксидами железа и алюминия и, особенно, с монтмориллонитом вермикулитом. Гуминовые и фульвокислоты способны образовывать устойчивые комплексы с медью. При рН 7-8 растворимость меди наименьшая.

Среднее содержание меди в почвах мира 30 мг/кг (Bowen, 1979). Вблизи индустриальных источников загрязнения в некоторых случаях может наблюдаться загрязнение почвы медью до 3500 мг/кг (Кабата-Пендиас, Пендиас, 1989). Среднее содержание металла в почвах центральных и южных областей бывшего СССР составляет 4,5-10,0 мг/кг, юга Западной Сибири - 30,6 мг/кг (Ильин, 1973), Сибири и Дальнего Востока - 27,8 мг/кг (Макеев, 1973). ПДК меди в России - 55 мг/кг (Инструктивное …, 1990), ОДК для песчаных и супесчаных почв - 33 мг/кг (Контроль…, 1998), в ФРГ - 100 мг/кг (Kloke, 1980).

Никель (Ni). Атомная масса 58,7. В континентальных отложениях он присутствует, главным образом, в виде сульфидов и арсенитов, ассоциируется также с карбонатами, фосфатами и силикатами. Кларк элемента в земной коре равен 58 мг/кг (Виноградов, 1957). Наибольшее количество металла накапливают ультраосновные (1400-2000 мг/кг) и основные (200-1000 мг/кг) породы, а осадочные и кислые содержат его в гораздо меньших концентрациях - 5-90 и 5-15 мг/кг, соответственно (Рэуце, Кырстя, 1986; Кабата-Пендиас, Пендиас, 1989). Большое значение в накоплении никеля почвообразующими породами играет их гранулометрический состав. На примере почвообразующих пород Западной Сибири видно, что в более легких породах его содержание наименьшее, в тяжелых - наибольшее: в песках - 17, супесях и легких суглинки -22, средние суглинки - 36, тяжелые суглинки и глины - 46 (Ильин, 2002).

Содержание никеля в почвах в значительной степени зависит от обеспеченности этим элементом почвообразующих пород (Кабата-Пендиас, Пендиас, 1989). Наибольшие концентрации никеля, как правило, наблюдаются в глинистых и суглинистых почвах, в почвах, сформированных на основных и вулканических породах и богатых органическим веществом. Распределение Ni в почвенном профиле определяется содержанием органического вещества, аморфных оксидов и количеством глинистой фракции.

Уровень концентрации никеля в верхнем слое почв зависит также от степени их техногенного загрязнения. В районах с развитой металлообрабатывающей промышленностью в почвах встречается очень высокое накопление никеля: в Канаде его валовое содержание достигает 206-26000 мг/кг, а в Великобритании содержание подвижных форм доходит до 506-600 мг/кг. В почвах Великобритании, Голландии, ФРГ, обработанных осадками сточных вод никель накапливается до 84-101 мг/кг (Кабата-Пендиас, Пендиас, 1989). В России (по данным обследования 40-60 % почв сельскохозяйственных угодий) этим элементом загрязнены 2,8 % почвенного покрова. Доля загрязненных Ni почв в ряду других ТМ (Pb, Cd, Zn, Cr, Co, As и др.), является фактически самой значительной и уступает только землям загрязненным медью (3,8%) (Аристархов, Харитонова, 2002). По данным мониторинга земель Государственной станции агрохимической службы «Бурятская» за 1993-1997 гг. на территории Республики Бурятия зарегистрировано превышение ПДК никеля на 1,4 % земель от обследованной территории сельхозугодий, среди которых выделяются почвы Закаменского (загрязнены 20% земель - 46 тыс.га) и Хоринского районов (загрязнены 11% земель - 8 тыс.га).

Хром (Cr). Атомная масса 52. В природных соединениях хром обладает валентностью +3 и +6. Большая часть Cr3+ присутствует в хромите FeCr2O4 или других минералах шпинелевого ряда, где он замещает Fe и Al, к которым очень близок по своим геохимическим свойствам и ионному радиусу.

Кларк хрома в земной коре - 83 мг/кг. Наибольшие его концентрации среди магматических горных пород характерны для ультраосновных и основных (1600-3400 и 170-200 мг/кг соответственно), меньшие - для средних пород (15-50 мг/кг) и наименьшие - для кислых (4-25 мг/кг). Среди осадочных пород максимальное содержание элемента обнаружено в глинистых осадках и сланцах (60-120 мг/кг), минимальное - в песчаниках и известняках (5-40 мг/кг) (Кабата-Пендиас, Пендиас, 1989). Содержание металла в почвообразующих породах разных регионов весьма разнообразно. В европейской части бывшего СССР его содержание в таких наиболее распространенных почвообразующих породах, как лессы, лессовидные карбонатные и покровные суглинки, составляет в среднем 75-95 мг/кг (Якушевская, 1973). Почвообразующие породы Западной Сибири содержат в среднем 58 мг/кг Cr, причем его количество тесно связано с гранулометрическим составом пород: песчаные и супесчаные породы - 16 мг/кг, а среднесуглинистые и глинистые - около 60 мг/кг (Ильин, Сысо, 2001).

В почвах большая часть хрома присутствует в виде Cr3+. В кислой среде ион Cr3+ инертен, при рН 5,5 почти полностью выпадает в осадок. Ион Cr6+ крайне не стабилен и легко мобилизуется как в кислых, так и щелочных почвах. Адсорбция хрома глинами зависит от рН среды: при увеличении рН адсорбция Cr6+ уменьшается, а Cr3+ увеличивается. Органическое вещество почвы стимулирует восстановление Cr6+ до Cr3+.

Природное содержание хрома в почвах зависит главным образом от его концентрации в почвообразующих породах (Кабата-Пендиас, Пендиас, 1989; Краснокутская и др., 1990), а распределение по почвенному профилю - от особенностей почвообразования, в частности от гранулометрического состава генетических горизонтов. Среднее содержание хрома в почвах - 70 мг/кг (Bowen, 1979). Наибольшее содержание элемента отмечается в почвах, сформированных на богатых этим металлом основных и вулканических породах. Среднее содержание Cr в почвах США составляет 54 мг/кг, Китая - 150 мг/кг (Кабата-Пендиас, Пендиас, 1989), Украины - 400 мг/кг (Беспамятнов, Кротов, 1985). В России его высокие концентрации в почвах в естественных условиях обусловлены обогащенностью почвообразующих пород. Курские черноземы содержат 83 мг/кг хрома, дерново-подзолистые почвы Московской области - 100 мг/кг. В почвах Урала, сформированных на серпентинитах, металла содержится до 10000 мг/кг, Западной Сибири - 86 - 115 мг/кг (Якушевская, 1973; Краснокутская и др., 1990; Ильин, Сысо, 2001).

Вклад антропогенных источников в поступление хрома весьма значителен. Металлический хром в основном используется для хромирования в качестве компонента легированных сталей. Загрязнение почв Cr отмечено за счет выбросов цементных заводов, отвалов железохромовых шлаков, нефтеперегонных заводов, предприятий черной и цветной металлургии, использования в сельском хозяйстве осадков промышленных сточных вод, особенно кожевенных предприятий, и минеральных удобрений. Наивысшие концентрации хрома в техногенно-загрязненных почвах достигают 400 и более мг/кг (Кабата-Пендиас, Пендиас, 1989), что особенно характерно крупным городам (табл. 1.4). В Бурятии по данным мониторинга земель, проведенным Государственной станцией агрохимической службы «Бурятская» за 1993-1997 гг., хромом загрязнены 22 тыс. га. Превышения ПДК в 1,6-1,8 раз отмечены в Джидинском (6,2 тыс. га), Закаменском (17,0 тыс. га) и Тункинском (14,0 тыс. га) районах.

Общую загрязненность почвы характеризует валовое количество тяжелого металла. Доступность же элементов для растений определяется их подвижными формами. Поэтому содержание в почве подвижных форм тяжелых металлов - важнейший показатель, характеризующий санитарно-гигиеническую обстановку и определяющий необходимость проведения мелиоративных детоксикационных мероприятий.
В зависимости от применяемого экстрагента извлекается различное количество подвижной формы тяжелого металла, которое с определенной условностью можно считать доступным для растений. Для экстракции подвижных форм тяжелых металлов используются различные химические соединения, обладающие неодинаковой экстрагирующей силой: кислоты, соли, буферные растворы и вода. Наиболее распространенными экстрагентами являются 1н HCl и ацетатно-аммонийный буфер с pH 4.8. В настоящее время еще накоплено недостаточно экспериментального материала, характеризующего зависимость содержания в растениях тяжелых металлов, экстрагируемых различными химическими растворами, от их концентрации в почве. Сложность этого положения обусловливается еще и тем, что доступность для растений подвижной формы тяжелого металла зависит во многом от свойств почвы и специфических особенностей растений. При этом поведение в почве каждого элемента имеет свои конкретные, присущие ему закономерности.
Для изучения влияния свойств почв на трансформацию соединений тяжелых металлов провели модельные опыты с резко различающимися по свойствам почвами (табл. 8). В качестве экстрагентов использовали сильную кислоту - 1н HNO3, нейтральную соль Ca(NO3)2, ацетатно-аммонийный буферный раствор и воду.


Аналитические данные, приведенные в таблицах 9-12 свидетельствуют о том. что содержание кислотно-растворимых соединений цинка, свинца и кадмия, переходящих в вытяжку 1н HNO3, близко к их количеству, внесенному в почву Этот экстрагент извлекал 78-90% Pb, 88-100% Cd и 78-96% Zn, поступивших в почву. Количество прочно фиксированных соединений этих элементов зависело от уровня плодородия почвы. Их содержание в слабоокультуренной дерново-подзолистой почве было ниже, чем в дерново-подзолистой среднеокультуренной и типичном черноземе.
Количество обменных соединений Cd, Pb и Zn, извлекаемых 1-н раствором нейтральной соли Ca(NO3)2, было в несколько раз меньше, внесенной в почву их массы и также зависело от уровня плодородия почвы. Наименьшее содержание экстрагируемых раствором Ca(NO3)2 элементов получено на черноземе. С ростом окультуренности дерново-подзолистой почвы подвижность тяжелых металлов также снижалась. Судя по солевой вытяжке, наиболее подвижны соединения кадмия, несколько меньше - цинка. Экстрагируемые нейтральной солью соединения свинца отличались наименьшей подвижностью.
Содержание подвижных форм металлов, извлекаемых ацетатно-аммонийным буферным раствором с pH 4,8, также определялось в первую очередь типом почвы, ее составом и физико-химическими свойствами.
Как и для обменных (извлекаемых 1 н Ca(NO3)2) форм этих элементов сохраняется закономерность, выражающаяся в увеличении количества подвижных соединений Cd, Pb и Zn в кислой почве, причем подвижность Cd и Zn выше, чем Pb. Количество кадмия, извлекаемого данной вытяжкой составляло для слабоокультуренной почвы 90-96% от внесенной дозы, для дерново-подзолистой среднеокультуренной 70-76%, чернозема - 44-48%. Количество цинка и свинца, переходящего в буферный раствор CH3COONH4, равны соответственно: 57-71 и 42-67% для дерново-подзолистой слабоокультуренной почвы, 49-70 и 37-48% для среднеокультуренной; 46-65 и 20-42% для чернозема. Снижение экстракционной способности CH3COONH4 для свинца на черноземе можно объяснить образованием более устойчивых его комплексов и соединений со стабильными гумусовыми соединениями.
Используемые в модельном эксперименте почвы отличались по многим параметрам почвенного плодородия, но в наибольшей степени по кислотной характеристике и количеству обменных оснований. Имеющиеся в литературе и полученные нами экспериментальные данные свидетельствуют о том, что реакция среды в почве сильно влияет на подвижность элементов.
Увеличение концентрации ионов водорода в почвенном растворе приводило к переходу слаборастворимых солей свинца в более растворимые соли (особенно характерен переход PbCO3 в Pb(HCO3)2 (Б.В. Некрасов, 1974). Кроме того, при подкислении уменьшается устойчивость свинцово-гумусных комплексов. Значение pH почвенного раствора - один из наиболее важных параметров, определяющих величину сорбции ионов тяжелых металлов почвой. При уменьшении pH увеличивается растворимость большинства тяжелых металлов и, следовательно, их мобильность в системе твердая фаза почвы - раствор. J. Esser, N. Bassam (1981), исследуя подвижность кадмия в аэробных почвенных условиях, установили, что в интервале pH 4-6 подвижность кадмия определяется ионной силой раствора, при pH более 6 ведущее значение приобретает сорбция окислами марганца. Растворимые органические соединения, по мнению авторов, формируют только слабые комплексы с кадмием и влияют на его сорбцию только при pH 8.
Наиболее подвижная и доступная для растений часть соединений тяжелых металлов в почве - это их содержание в почвенном растворе. Количество поступивших в почвенный раствор ионов металлов определяет токсичность конкретного элемента в почве. Состояние равновесия в системе твердая фаза -раствор определяет сорбционные процессы, характер и направленность которых зависит от свойств и состава почвы. Влияние свойств почвы на подвижность тяжелых металлов и их переход в водную вытяжку подтверждают данные о разном количестве воднорастворимых соединений Zn, Pb и Cd, переходящих из почв с различного уровня плодородия при одинаковых дозах внесенных металлов (табл. 13). По сравнению с черноземом больше воднорастворимых соединений металлов содержалось в дерново-подзолистой среднеокультуренной почве. Самое высокое содержание воднорастворимых соединений Zn, Pb и Cd было в слабоокультуренной почве. Окультуренность почв уменьшала подвижность тяжелых металлов. В дерново-подзолистой слабоокультуренной почве содержание воднорастворимых форм Zn. Pb и Cd было на 20-35% выше, чем на среднеокультуренной и в 1.5-2,0 раза выше, чем в типичном черноземе. Рост плодородия почвы, сопровождающийся увеличением содержания гумуса, фосфатов, нейтрализацией избыточной кислотности и повышением буферных свойств приводит к снижению содержания наиболее агрессивной воднорастворимой формы тяжелых металлов.

Решающую роль в распределении тяжелых металлов в системе почва-раствор играют процессы сорбции-десорбции на твердой фазе почвы, определяемые свойствами почвы и не зависящие от формы внесенного соединения. Образующиеся соединения тяжелых металлов с твердой фазой почвы термодинамически более устойчивы, чем внесенные соединения, и они определяют концентрацию элементов в почвенном растворе (Р.И. Первунина. 1983).
Почва мощный и активный поглотитель тяжелых металлов, она способна прочно связывать и тем самым снижать поступление токсикантов в растения. Активно инактивируют соединения металлов минеральные и органические компоненты почвы, но количественные выражения их действия зависят от типа почв (B A. Большаков и др., 1978, В.Б. Ильин, 1987).
Накопленный экспериментальный материал свидетельствует о том. что наибольшее количество тяжелых металлов из почвы извлекается 1 н кислотной вытяжкой. При этом данные близки к валовому содержанию элементов в почве. Эту форму элементов можно считать общим запасным количеством, способным переходить в мобильную подвижную форму. Содержание тяжелого металла при извлечении из почвы ацетатно-аммонийным буфером характеризует уже более мобильную подвижную часть. Еще более мобильной является обменная форма тяжелого металла. экстрагируемая нейтральным солевым раствором. В.С. Горбатов и Н.Г. Зырин (1987) считают, что наиболее доступной для растений является обменная форма тяжелых металлов, селективно извлекаемая растворами солей, анион которых не образует комплексов с тяжелыми металлами, а катион обладает высокой вытесняющей силой. Именно такими свойствами обладает Ca(NO3)2, используемый в нашем эксперименте. Наиболее же агрессивные растворители - кислоты, чаще всего используемые 1н HCl и 1н HNO3, извлекают из почвы не только усвояемые растениями формы, но и часть валового элемента, которые являются ближайшим резервом, для перехода в подвижные соединения.
Концентрация в почвенном растворе тяжелых металлов, извлекаемых водной вытяжкой, характеризует наиболее активную часть их соединений. Это самая агрессивная и динамичная фракция тяжелых металлов, характеризующая степень подвижности элементов в почве. Высокое содержание воднорастворимых форм TM может приводить не только к загрязнению растительной продукции, но и к резкому снижению урожая вплоть до его гибели. При очень высоком содержании в почве водно-растворимой формы тяжелого металла, она становиться самостоятельным фактором, определяющим величину урожая и степень его загрязненности.
В нашей стране накоплена информация о содержании в незагрязненных почвах подвижной формы TM, главным образом тех из них, которые известны как микроэлементы - Mn, Zn, Cu, Mo. Co (табл. 14). Для определения подвижной формы чаще всего использовались индивидуальные экстрагенты (по Пейве Я.В. и Ринькису Г.Я.). Как видно из таблицы 14, почвы отдельных регионов значительно различались по количеству подвижной формы одного и того же металла.


Причиной могли быть, как считает В.Б. Ильин (1991 г.), генетические особенности почв, прежде всего специфика гранулометрического и минералогического составов, уровень гумусированности, реакция среды. По этой причине могут сильно различаться почвы одного природного региона и более того, даже одного генетического типа в пределах этого региона.
Различие между встреченным минимальным и максимальным количеством подвижной формы может находиться в пределах математического порядка. Совершенно недостаточно сведений о содержании в почвах подвижной формы Pb, Cd, Cr, Hg и других наиболее токсичных элементов. Правильно оценить подвижность TM в почвах затрудняет использование в качестве экстрагента химических веществ, сильно различающихся по своей растворяющей способности. Так, например, 1 н HCl извлекала из пахотного горизонта подвижных форм в мг/кг: Mn - 414, Zn - 7,8 Ni - 8,3, Cu - 3,5, Pb - 6,8, Co - 5,3 (почвы Западной Сибири), тогда как 2,5% CH3COOH извлекала соответственно 76; 0,8; 1,2; 1,3; 0,3; 0,7 (почвы Томского Приобья, данные Ильина. 1991). Эти материалы свидетельствуют о том, что 1 н HCl извлекала из почвы за исключением цинка около 30% металлов от валового количества, а 2,5% CH3COOH - менее 10%. Поэтому экстрагент 1н HCl, широко используемый в агрохимических исследованиях и при характеристике почв, обладает высокой мобилизующей способностью в отношении запасов тяжелых металлов.
Основная часть подвижных соединений тяжелых металлов приурочена к гумусовому или корнеобитаемому горизонтам почвы, в которых активно происходят биохимические процессы и содержится много органических веществ. Тяжелые металлы. входящие в состав органических комплексов, обладают высокой мобильностью. В.Б. Ильин (1991) указывает на возможность накопления тяжелых металлов в иллювиальном и карбонатном горизонтах, в которые попадают мигрирующие из вышележащего слоя тонкодисперсные частицы, насыщенные тяжелыми металлами, и воднорастворимые формы элементов. В иллювиальном и карбонатном горизонтах металлосодержащие соединения выпадают в осадок. Этому в наибольшей степени способствует резкое повышение pH среды в почве указанных горизонтов, обусловленное наличием карбонатов.
Способность тяжелых металлов накапливаться в нижних горизонтах почв, хорошо иллюстрируют данные по профилям почв Сибири (табл. 15). В гумусовом горизонте отмечается повышенное содержание многих элементов (Sr, Mn, Zn, Ni и др.) независимо от их генезиса. Во многих случаях четко прослеживается увеличение содержания подвижного Sr в карбонатном горизонте. Общее содержание подвижных форм в меньшем количестве характерно для песчаных почв, в значительно большем - для суглинистых. То есть, имеется тесная связь между содержанием подвижных форм элементов и гранулометрическим составом почв. Аналогичная положительная зависимость прослеживается между содержанием подвижных форм тяжелых металлов и содержанием гумуса.

Содержание подвижных форм тяжелых металлов подвержено сильным колебаниям, что связано с изменяющейся биологической активностью почв и влиянием растений. Так, по данным исследований, проведенных В.Б. Ильиным, содержание подвижного молибдена в дерново-подзолистой почве и южном черноземе в течение вегетационного периода изменялось в 5 раз.
В некоторых научно-исследовательских учреждениях в последние годы изучаюсь влияние длительного применения минеральных, органических и известковых удобрений на содержание в почве подвижных форм тяжелых металлов.
На Долгопрудной агрохимической опытной станции (ДАОС, Московская область) проведено изучение накопления в почве тяжелых металлов, токсичных элементов и их подвижности в условиях длительного применения фосфорных удобрений на известкованной дерново-подзолистой тяжелосуглинистой почве (Ю.А. Потатуева и др., 1994 г.). Систематическое применение балластных и концентрированных удобрений в течение 60 лет, разных форм фосфатов в течение 20 лет и фосфоритной муки различных месторождений в течение 8 лет не оказало существенного влияния на валовое содержание в почве тяжелых металлов и токсических элементов (ТЭ), но привело к увеличению подвижности в ней некоторых TM и ТЭ. Содержание подвижных и водорастворимых форм в почве возрастало примерно в 2 раза при систематическом применении всех изученных форм фосфорных удобрений, составляя, однако, только 1/3 ПДК. Количество подвижного стронция возрастало в 4,5 раза в почве, получившей простой суперфосфат. Внесение сырых фосфоритов Кингисепского месторождения привело к увеличению содержания в почве подвижных форм (ААБ pH 4,8): свинца в 2 раза, никеля - на 20% и хрома на 17%, что составило соответственно 1/4 и 1/10 ПДК. Увеличение содержания подвижного хрома на 17% отмечено в почве, получавшей сырые фосфориты Чилисайского месторождения (табл. 16).



Сопоставление экспериментальных данных длительных полевых опытов ДАОС с санитарно-гигиеническими нормативами по содержанию подвижных форм тяжелых металлов в почве, а при их отсутствии с предлагаемыми в литературе рекомендациями, свидетельствует о том, что содержание подвижных форм этих элементов в почве было ниже допустимых уровней. Эти эксперементальные данные свидетельствуют о том, что даже очень длительное - в течение 60 лет применение фосфорных удобрений не привело к превышению уровня ПДК в почве ни в отношении валовых ни по подвижным формам тяжелых металлов. В то же время эти данные свидетельствуют о том, что нормирование тяжелых металлов в почве только по валовым формам недостаточно обосновано и должно быть дополнено содержанием подвижной формы, которая отражает как химические свойства самих металлов, так и свойства почвы, на которой выращиваются растения.
На базе длительного полевого опыта, заложенного под руководством академика Н.С. Авдонина на экспериментальной базе МГУ "Чашниково", проведено исследование влияния длительного в течение 41 года применения минеральных, органических, известковых удобрений и их сочетания на содержание подвижных форм тяжелых металлов в почве (В.Г. Минеев и др., 1994). Результаты исследований, проведенные в таблице 17, показали, что создание оптимальных условий для роста и развития растений существенно снижало содержание подвижных форм свинца и кадмия в почве. Систематическое же внесение азотно-калийных удобрений, подкисляя почвенный раствор и снижая содержание подвижного фосфора, удваивало коцентрацию подвижных соединений свинца и никеля и в 1,5 раза увеличивало содержание кадмия в почве.


Содержание валовых и подвижных форм TM в дерново-подзолистой легкосуглинистой почве Беларуси, изучалось при длительном применении осадков городских сточных вод: термофильно-сброженных с иловых полей (ТИП) и термофильно-сброженных с последующим механическим обезвоживанием (ТМО).
За 8 лет исследований насыщенность севооборота OCB составило 6,25 т/га (одинарная доза) и 12,5 т/га (двойная доза), что приблизительно в 2-3 раза выше рекомендуемых доз.
Как видно из таблицы 18, четко прослеживается закономерность повышения содержания валовых и подвижных форм TM в результате трехразового внесения ОСВ. Причем наибольшей подвижностью отличается цинк, количество которого в подвижной форме возросло в 3-4 раза по сравнению с контрольной почвой (Н.П. Решецкий, 1994 г.). При этом содержание подвижных соединений кадмия, меди, свинца и хрома изменялось не существенно.


Исследования ученых Белорусской с.-х. академии показали, что при внесении осадков сточных вод (СИП-осадок сырой с иловых полей, ТИП, ТМО) происходило заметное повышение содержания в почве подвижных форм элементов, но наиболее сильно кадмия, цинка, меди (табл. 19). Известкование практически не повлияло на подвижность металлов. По мнению авторов. использование вытяжки в 1 н HNO3 для характеристики степени подвижности металлов не является удачным, так как в нее переходит свыше 80%, от общего содержания элемента (А.И. Горбылева и др., 1994).


Установление определенных зависимостей изменения подвижности TM в почве от уровня кислотности проводились в микрополевых опытах на выщелоченный черноземах ЦЧЗ РФ. При этом проводилось определение кадмия, цинка, свинца в следующих вытяжках: соляной, азотной, серной кислот, аммонийно-ацетатном буфере при pH 4,8 и pH 3,5, азотнокислом аммонии, дистиллированной воде. Установлена тесная зависимость между валовым содержанием цинка и его подвижными формами, извлекаемыми кислотами R=0,924-0,948. При использовании ААБ pH 4.8 R=0,784, ААБ pH 3,5=0,721. Извлекаемый свинец соляной и азотной кислотой менее тесно коррелировал с валовым содержанием: R=0,64-0,66. Другие вытяжки имели значения коэффициентов корреляции намного ниже. Корреляции между извлекаемыми кислотами соединениями кадмия и валовыми запасами была очень высокая (R=0,98-0.99). при извлечении ААБ pH 4,8-R=0,92. Использование других вытяжек давало результаты, свидетельствующие о слабой связи между валовой и подвижной формами тяжелых металлов в почве (Н.П. Богомазов, П.Г. Акулов, 1994).
В многолетнем полевом опыте (ВНИИ льна, Тверская область), при длительном применении удобрений на дерново-подзолистой почве доля подвижных соединений металлов от содержания их потенциально доступных форм уменьшалась особенно это заметно на 3-й год последействия известь в дозе 2 г к. (табл. 20). На 13-й год последействия извести в той же дозе снижала в почве лишь содержание подвижного железа и алюминия. на 15-й год - железа, алюминия и марганца (Л.И. Петрова. 1994).


Следовательно, для снижения содержания в почве подвижных форм свинца и меди необходимо проводить повторное известкование почв.
Изучение подвижности тяжелых металлов в черноземах Ростовской области показало, что в метровом слое обыкновенных черноземов количество цинка, извлекаемого ацетатноаммонийной буферной вытяжкой с pH 4,8, колебалось в пределах 0.26-0,54 мг/кг. марганца 23,1-35,7 мг/кг, меди 0,24-0,42 (Г.В Агафонов, 1994), Сопоставление этих цифр с валовыми запасами микроэлементов в почве тех же участков показало, что подвижность различных элементов существенно различается. Цинк на карбонатном черноземе в 2,5-4,0 раза менее доступен растениям, чем медь и в 5-8 раз, чем марганец (табл. 21).


Таким образом, результаты проведенных исследований показывают. что проблема подвижности тяжелых металлов в почве является сложной и многофакторной. Содержание подвижных форм тяжелых металлов в почве зависит от многих условий. Главный прием, приводящий к уменьшению содержания этой формы тяжелых металлов - это повышение плодородия почв (известкование, увеличение содержания гумуса и фосфора и др.). В то же время общепринятой формулировки по подвижным металлам пока нет. Мы в этом разделе предложили наше представление о различных фракциях подвижных металлов в почве:
1) общий запас подвижных форм (извлекаемые кислотами);
2) мобильная подвижная форма (извлекаемая буферными растворами):
3) обменная (извлекаемая нейтральными солями);
4) воднорасторимая.

Главные источники тяжелых металлов — отходы промышленных предприятий, различные типы электростанций, заводы из добывающей и перерабатывающей отрасли, а также выхлопы автомобильной и некоторой иной техники. Чаще всего тяжелые металлы попадают в окружающую среду в виде аэрозолей или таких химических соединений как сульфаты, сульфиды, карбонаты, оксиды и др.

Какие из тяжелых металлов чаще всего загрязняют почву? Наиболее распространенным металлами из группы тяжелых в промышленных отходах являются ртуть, свинец и кадмий. Также нередко встречается среди вредных выбросов мышьяк, цинк, железо, медь и марганец.

Тяжелые металлы могут попадать в окружающую среду в нерастворимых и растворимых формах.

Пути засорения почвы тяжелыми металлами

Первый способ загрязнения тяжелыми металлами почвы — попадание в воду и дальнейшее распространение этой воды в грунте.

Другой вариант — попадание тяжелых металлов в атмосферу и выпадение в осадок посредством сухого осаждения или мокрого осаждения.


Взаимодействие почвы с тяжелыми металлами

Почва является адсорбентом различных типов химических элементов, в том числе и тяжелых металлов. На протяжении длительного периода они находятся в грунте, проходя постепенную дезактивацию. Для некоторых тяжелых металлов эти сроки могут составлять несколько сотен или даже тысяч лет.

Ионы тяжелых и других металлов могут вступать в реакцию с компонентами почвы, утилизируясь путем выщелачивания, с помощью эрозии, дефляции и благодаря растениям.

Какие существуют методы определения тяжелых металлов в почве?

Прежде всего, надо понимать, что состав почвы неоднородный, поэтому даже на одном и том же земельном участке почвенные показатели могут сильно различаться в различных его частях. Поэтому нужно брать несколько проб и либо исследовать каждую в отдельности, либо смешивать их в единую массу и брать образец для исследования оттуда.

Количество методов определения металлов в почве достаточно велико, например некоторые из них:

  • метод определения подвижных форм.
  • метод определения обменных форм.
  • метод выявления растворимых в кислотах (техногенных) форм.
  • метод валового содержания.

С помощью данных методик производится процесс вытяжки металлов из почвы. Впоследствии нужно определить процент содержания тех или иных металлов в самой вытяжке, для чего применяются три основных технологии:

2) Масс-спектрометрия с индуктивно-связанной плазмой.

3) Электрохимические методы.

Прибор для соответствующей технологии выбирается в зависимости от того, какой элемент исследуется и какая его концентрация предполагается в почвенной вытяжке.

Спектрометрические методы исследования тяжелых металлов в почве

1) Атомно-абсорбционная спектрометрия.

Проба грунта растворяется в специальном растворителе, после чего реагент связывается с определенным металлом, выпадает в осадок, высушивается и прокаливается, чтобы вес стал постоянным. Затем производится взвешивание с использованием аналитических весов.

К недостаткам этого метода относится значительное количество времени, требуемое на анализ, и высокий уровень квалификации исследователя.

2) Атомно-абсорбционная спектрометрия с плазменной атомизацией.

Это более распространенный метод, позволяющий определить сразу несколько различных металлов за один прием. Также отличается точностью. Суть метода заключается в следующем: пробу нужно перевести в газообразное атомное состояние, затем анализируется степень поглощения атомами газов излучения — ультрафиолетового или видимого.

Электрохимические методы исследования тяжелых металлов в почве

Подготовительный этап заключается в растворении образца почвы в водном растворе. В дальнейшем применяются такие технологии определения в нем тяжелых металлов:

  • потенциометрия.
  • вольтамперометрия.
  • кондуктометрия.
  • кулонометрия.